Last theorem of the original challenge proved:

${
  $d x y z a b B $.  $d x y z a b .o. $.  $d a b ph $.  $d M a b x $.
  mendpadm.a $e |- B = ( Base ` M ) $.
  mendpadm.b $e |- .o. = ( +g ` M ) $.
  mendpadm.c $e |- ( ph -> B =/= (/) ) $.
  mendpadm.d $e |- ( ph -> M e. Mgm ) $.
  mendpadm.e $e |- ( ph -> A. x e. B A. y e. B A. z e. B ( ( x .o. y ) .o. 
( x .o. ( z .o. y ) ) ) = z ) $.
  $( Boolean groups (i.e. abelian groups of exponent 2), can be defined by 
one identity.
     Here we use a short identity from a 1972 paper of N.S. Mendelsohn and 
R. Padmanabhan. $)
  mendpadm $p |- ( ph -> ( M e. Abel /\ A. x e. B ( x .o. x ) = ( 0g ` M ) 
) ) $=
    ( vb va wcel co wceq wral weq oveq12d cabl cv c0g cfv cbs a1i 
mendpadmlem11
    cplusg wa wi wal mendpadmlem9 oveq1 oveq2 eqeq12d cbvral2vw r19.21bi 
df-ral
    sylib 19.21bi 3impia isabld eqid adantr simpr mgmcl syl3anc 
mendpadmlem6 id
    eqeq1d eqcom bitrdi rspc2v adantll oveq1d mendpadmlem5b rspcv mpan9 
adantlr
    cmgm mpd eqtr3d oveq2d mendpadmlem5a ismgmid2 ralrimiva cbvralvw jca ) 
AFUA
    
OBUBZWIGPZFUCUDZQZBERZAMNEGFEFUEUDQAHUFGFUHUDQAIUFABCDEFGHIKLJUGAMUBZEOZNUB
    
ZEOZWNWPGPZWPWNGPZQZAWOUIZWQWTUJZNXAWTNERZXBNUKAXCMEAWICUBZGPZXDWIGPZQZCERB
    
ERXCMERABCDEFGHIKLULXGWTWNXDGPZXDWNGPZQBCMNEEBMSZXEXHXFXIWIWNXDGUMWIWNXDGUN
    
UOCNSXHWRXIWSXDWPWNGUNXDWPWNGUMUOUPUSUQWTNEURUSUTVAVBAWPWPGPZWKQZNERWMAXLNE
    
AWQUIZMEGXKFWKHWKVCIXMFVTOZWQWQXKEOAXNWQKVDAWQVEZXOEFWPWPGHIVFVGXMWOUIZWNWN
    
GPZWNGPZXKWNGPWNXPXQXKWNGXPWJXDXDGPZQZCERBERZXQXKQZXMYAWOAYAWQABCDEFGHIKLVH
    
VDVDWQWOYAYBUJAXTYBXSXKQZBCWPWNEEBNSZXTXKXSQYCYDWJXKXSYDWIWPWIWPGYDVIZYETVJ
    
XKXSVKVLCMSZXSXQXKYFXDWNXDWNGYFVIZYGTVJVMVNWAZVOAWOXRWNQZWQAWJWIGPZWIQZBERW
    
OYIABCDEFGHIKLVPYKYIBWNEXJYJXRWIWNXJWJXQWIWNGXJWIWNWIWNGXJVIZYLTZYLTYLUOVQV
    
RVSWBXPWNXQGPZWNXKGPWNXPXQXKWNGYHWCAWOYNWNQZWQAWIWJGPZWIQZBERWOYOABCDEFGHIK
    
LWDYQYOBWNEXJYPYNWIWNXJWIWNWJXQGYLYMTYLUOVQVRVSWBWEWFXLWLNBENBSZXKWJWKYRWPW
    IWPWIGYRVIZYSTVJWGUSWH $.
$}

Every theorem of the original challenge now has a proof (either by me or 
Thierry).  


-- 
You received this message because you are subscribed to the Google Groups 
"Metamath" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to [email protected].
To view this discussion visit 
https://groups.google.com/d/msgid/metamath/da0c754b-a3f2-465e-b4bc-0edad930642cn%40googlegroups.com.

Reply via email to