I removed some DV conditions from my previous proof of aabbaa to use it in 
mendpadmlem9. Proofs for  mendpadmlem10  and  mendpadmlem11  are also 
provided.

${
  $( If multiplying two times from the left (and the right) is an identity
     mapping, then the operation is commutative. $)
  $d a b u B $.  $d b u X $.  $d b u Y $.  $d a b u .o. $.  $d u ph $.
  aabbaa.a $e |- ( ph -> A. a e. B A. b e. B ( a .o. b ) e. B ) $.
  aabbaa.b $e |- ( ph -> A. a e. B A. b e. B ( a .o. ( a .o. b ) ) = b ) $.
  aabbaa.c $e |- ( ph -> A. a e. B A. b e. B ( ( b .o. a ) .o. a ) = b ) $.
  aabbaa.d $e |- ( ph -> X e. B ) $.
  aabbaa.e $e |- ( ph -> Y e. B ) $.
  aabbaa $p |- ( ph -> ( X .o. Y ) = ( Y .o. X ) ) $=
    ( vu co wceq wral oveq2 id oveq12d eqeq1d weq ralbidv cbvralvw sylib 
bitrdi
    cv eqcom oveq1 oveq1d eqeq12d wa eqidd wcel eleq1d rspc2vd mpd oveq2d 
eqtrd
    ) 
ACDENZUSCENZCENZDCENAGUFZMUFZENZVCENZVBOZGBPZMBPZUSVAOZAVBFUFZENZVJENZVBO
    
ZGBPZFBPVHJVNVGFMBFMUAZVMVFGBVOVLVEVBVOVKVDVJVCEVJVCVBEQVORZSTUBUCUDZAVIVBV
    
BCENZCENZOZVFMGCUSBBBVCCOZVFVSVBOVTWAVEVSVBWAVDVRVCCEVCCVBEQWARSTVSVBUGUEVB
    
USOZVBUSVSVAWBRWBVRUTCEVBUSCEUHUIUJKAWAUKBULZAVCVBENZBUMZGBPZMBPZUSBUMZAVJV
    
BENZBUMZGBPZFBPWGHWKWFFMBVOWJWEGBVOWIWDBVJVCVBEUHZUNUBUCUDAWHCVBENZBUMWEMGC
    
DBBBWAWDWMBVCCVBEUHUNVBDOZWMUSBVBDCEQUNKWCLUOUPZUOUPAUTDCEAUTUSUSDENZENZDAC
    
WPUSEAVHCWPOZVQAWRVBVBDENZDENZOZVFMGDCBBBVCDOZVFWTVBOXAXBVEWTVBXBVDWSVCDEVC
    
DVBEQXBRSTWTVBUGUEVBCOZVBCWTWPXCRXCWSUSDEVBCDEUHUIUJLAXBUKBULKUOUPUQAVCWDEN
    
ZVBOZGBPZMBPZWQDOZAVJWIENZVBOZGBPZFBPXGIXKXFFMBVOXJXEGBVOXIXDVBVOVJVCWIWDEV
    
PWLSTUBUCUDAXHUSUSVBENZENZVBOXEMGUSDBBBVCUSOZXDXMVBXNVCUSWDXLEXNRVCUSVBEUHS
    TWNXMWQVBDWNXLWPUSEVBDUSEQUQWNRUJWOAXNUKBULLUOUPURUIUR $.
$}

${
  $d x y z a b c u v w B $.  $d x y z a b c u v w .o. $.  $d a b c u v w ph 
$.
  mendpadm.a $e |- B = ( Base ` M ) $.
  mendpadm.b $e |- .o. = ( +g ` M ) $.
  mendpadm.d $e |- ( ph -> M e. Mgm ) $.
  mendpadm.e $e |- ( ph -> A. x e. B A. y e. B A. z e. B ( ( x .o. y ) .o. 
( x .o. ( z .o. y ) ) ) = z ) $.
  $( Lemma for mendpadm. Multiplication is commutative. $)
  mendpadmlem9 $p |- ( ph -> A. x e. B A. y e. B ( x .o. y ) = ( y .o. x ) 
) $=
    ( vu vb va cv co wceq wral wcel weq vv wa cmgm ad2antrr simpr mgmcl 
syl3anc
    simplr ralrimiva oveq1 eleq1d oveq2 cbvral2vw sylib mendpadmlem8a id 
eqeq1d
    oveq12d oveq2d eqeq12d mendpadmlem8b ralcom aabbaa ) 
ALOZUAOZGPZVEVDGPZQZU
    
AERZLERBOZCOZGPZVKVJGPZQZCERBERAVILEAVDESZUBZVHUAEVPVEESZUBZEVDVEGCBAVMESZB
    
ERCERZVOVQAMOZNOZGPZESZNERZMERVTAWEMEAWAESZUBZWDNEWGWBESZUBFUCSZWFWHWDAWIWF
    
WHJUDAWFWHUHWGWHUEEFWAWBGHIUFUGUIUIWDVSVKWBGPZESMNCBEEMCTZWCWJEWAVKWBGUJZUK
    
NBTZWJVMEWBVJVKGULZUKUMUNUDAVKVMGPZVJQZBERCERZVOVQAWAWCGPZWBQZNERMERZWQAVJV
    
LGPZVKQZCERBERWTABCDEFGHIJKUOXBWSWAWAVKGPZGPZVKQBCMNEEBMTZXAXDVKXEVJWAVLXCG
    
XEUPVJWAVKGUJURUQCNTZXDWRVKWBXFXCWCWAGVKWBWAGULUSXFUPUTUMUNWSWPVKWJGPZWBQMN
    
CBEEWKWRXGWBWKWAVKWCWJGWKUPWLURUQWMXGWOWBVJWMWJVMVKGWNUSWMUPUTUMUNUDVRVLVKG
    
PVJQZCERBERZXHBERCERAXIVOVQABCDEFGHIJKVAUDXHBCEEVBUNAVOVQUHVPVQUEVCUIUIVHVN
    
VJVEGPZVEVJGPZQLUABCEELBTVFXJVGXKVDVJVEGUJVDVJVEGULUTUACTXJVLXKVMVEVKVJGULV
    EVKVJGUJUTUMUN $.

  $( Lemma for mendpadm. Multiplication is associative. $)
  mendpadmlem10 $p |- ( ph -> A. x e. B A. y e. B A. z e. B ( ( x .o. y ) 
.o. z ) = ( x .o. ( y .o. z ) ) ) $=
    ( va vb co wceq wral weq oveq2 oveq1 oveq2d vu vv wcel mendpadmlem4 
oveq12d
    vw vc cv wa eqeq1d eqeq12d cbvral2vw sylib ad3antrrr simpllr eqidd 
ad2antrr
    id cmgm simplr simpr syl3anc adantr rspc2vd mpd mendpadmlem8b oveq1d 
rspc2v
    mgmcl wi adantll cbvral3vw rspc3v 3eqtr3rd eqtr3d ralrimiva ) 
AUAUHZUBUHZGN
    
ZUFUHZGNZVQVRVTGNZGNZOZUFEPZUBEPZUAEPBUHZCUHZGNZDUHZGNZWGWHWJGNZGNZOZDEPCEP
    
BEPAWFUAEAVQEUCZUIZWEUBEWPVREUCZUIZWDUFEWRVTEUCZUIZVQWAVQGNZGNZWAWCWTLUHZMU
    
HZXCGNZGNZXDOZMEPLEPZXBWAOZAXHWOWQWSAWGWHWGGNZGNZWHOZCEPBEPXHABCDEFGHIJKUDX
    
LXGXCWHXCGNZGNZWHOBCLMEEBLQZXKXNWHXOWGXCXJXMGXOURZWGXCWHGRUEUJCMQZXNXFWHXDX
    
QXMXEXCGWHXDXCGSTXQURZUKULUMUNWTXIVQXDVQGNZGNZXDOXGLMVQWAEEELUAQZXFXTXDYAXC
    
VQXEXSGYAURZXCVQXDGRUEUJXDWAOZXTXBXDWAYCXSXAVQGXDWAVQGSTYCURUKAWOWQWSUOWTYA
    
UIEUPWTFUSUCZVSEUCZWSWAEUCAYDWOWQWSJUNZWRYEWSWRYDWOWQYEAYDWOWQJUQAWOWQUTWPW
    
QVAEFVQVRGHIVIVBVCZWRWSVAZEFVSVTGHIVIVBVDVEWTXAWBVQGWTWAVSWBVTGNZGNZGNZWAVS
    
VRGNZGNWBXAWTYJYLWAGWTYIVRVSGWTXCXDGNZXDGNZXCOZMEPLEPZYIVROZAYPWOWQWSAWIWHG
    
NZWGOZCEPBEPYPABCDEFGHIJKVFYSYOXCWHGNZWHGNZXCOBCLMEEXOYRUUAWGXCXOWIYTWHGWGX
    
CWHGSZVGXPUKXQUUAYNXCXQYTYMWHXDGWHXDXCGRZXRUEUJULUMUNZWQWSYPYQVJWPYOYQVRXDG
    
NZXDGNZVROLMVRVTEELUBQZYNUUFXCVRUUGYMUUEXDGXCVRXDGSVGUUGURUKMUFQZUUFYIVRUUH
    
UUEWBXDVTGXDVTVRGRUUHURUEUJVHVKVETTWTYMXCUGUHZXDGNZGNZGNZUUIOZUGEPMEPLEPZYK
    
WBOZAUUNWOWQWSAWIWGWJWHGNZGNZGNZWJOZDEPCEPBEPUUNKUUSUUMYTXCUUPGNZGNZWJOYMXC
    
WJXDGNZGNZGNZWJOBCDLMUGEEEXOUURUVAWJXOWIYTUUQUUTGUUBWGXCUUPGSUEUJXQUVAUVDWJ
    
XQYTYMUUTUVCGUUCXQUUPUVBXCGWHXDWJGRTUEUJDUGQZUVDUULWJUUIUVEUVCUUKYMGUVEUVBU
    
UJXCGWJUUIXDGSTTUVEURUKVLUMUNWTYEWSWBEUCZUUNUUOVJYGYHWTYDWQWSUVFYFWPWQWSUTY
    
HEFVRVTGHIVIVBUUMUUOVSXDGNZVSUUJGNZGNZUUIOWAVSUUIVTGNZGNZGNZUUIOLMUGVSVTWBE
    
EEXCVSOZUULUVIUUIUVMYMUVGUUKUVHGXCVSXDGSXCVSUUJGSUEUJUUHUVIUVLUUIUUHUVGWAUV
    
HUVKGXDVTVSGRUUHUUJUVJVSGXDVTUUIGRTUEUJUUIWBOZUVLYKUUIWBUVNUVKYJWAGUVNUVJYI
    
VSGUUIWBVTGSTTUVNURUKVMVBVEWTYLVQWAGWTYPYLVQOZUUDWRYPUVOVJZWSWOWQUVPAYOUVOV
    
QXDGNZXDGNZVQOLMVQVREEYAYNUVRXCVQYAYMUVQXDGXCVQXDGSVGYBUKMUBQZUVRYLVQUVSUVQ
    
VSXDVRGXDVRVQGRUVSURUEUJVHVKVCVETVNTVOVPVPVPWDWNWGVRGNZVTGNZWGWBGNZOWIVTGNZ
    
WGWHVTGNZGNZOUAUBUFBCDEEEUABQZWAUWAWCUWBUWFVSUVTVTGVQWGVRGSVGVQWGWBGSUKUBCQ
    
ZUWAUWCUWBUWEUWGUVTWIVTGVRWHWGGRVGUWGWBUWDWGGVRWHVTGSTUKUFDQZUWCWKUWEWMVTWJ
    WIGRUWHUWDWLWGGVTWJWHGRTUKVLUM $.

  $d a b c M $.
  mendpadm.c $e |- ( ph -> B =/= (/) ) $.
  $( Lemma for mendpadm. ` M ` is a group. $)
  mendpadmlem11 $p |- ( ph -> M e. Grp ) $=
    ( vb vu wceq wcel co wral eqeq12d oveq12d va vc c0g cfv cbs a1i cplusg 
cmgm
    mgmcl syl3an1 w3a mendpadmlem10 weq oveq1 oveq1d oveq2d rspc3v 
mendpadmlem7
    cv oveq2 mpan9 mendpadmlem5b id cbvralvw sylib wi simpr ax-1 eleq1a 
anabsi5
    wa im2anan9 3anim1i 3anidm23 syl mendpadmlem6 ad2antrr eqeq1d eqeq2d 
rspc2v
    ancoms adantll mpd rspccv eqtr3d mendpadmlem5a adantr grpidd rspcdv ex 
mpid
    imp simplll simpllr adantl 3jca 3ad2ant1 3adant1 rspcdv2 pm3.22 sylc 
isgrpd
    ) 
AUAMUBEGFUAUSZFUCUDZEFUEUDOZAHUFGFUGUDOZAIUFAFUHPZXCEPZMUSZEPZXCXIGQZEPJE
    
FXCXIGHIUIUJABUSZCUSZGQZDUSZGQZXLXMXOGQZGQZOZDERCERBERXHXJUBUSZEPUKXKXTGQZX
    
CXIXTGQZGQZOZABCDEFGHIJKULXSYDXCXMGQZXOGQZXCXQGQZOXKXOGQZXCXIXOGQZGQZOBCDXC
    
XIXTEEEBUAUMZXPYFXRYGYKXNYEXOGXLXCXMGUNUOXLXCXQGUNSCMUMZYFYHYGYJYLYEXKXOGXM
    
XIXCGUTUOYLXQYIXCGXMXIXOGUNUPSDUBUMZYHYAYJYCXOXTXKGUTYMYIYBXCGXOXTXIGUTUPSU
    
QVAABCDEFGHILJKURAXHXDXCGQZXCOZAXHXIXIGQZXIGQZXIOZMERZYOAXLXLGQZXLGQZXLOZBE
    
RZYSABCDEFGHIJKVBZUUBYRBMEBMUMZUUAYQXLXIUUEYTYPXLXIGUUEXLXIXLXIGUUEVCZUUFTU
    
UFTUUFSVDVEAXHYSYOVFAXHVKZYRYOMXCEAXHVGZUUGMUAUMZVKZYQYNXIXCUUJYPXDXIXCGUUJ
    
AXJVKZYPXDOUUGUUIUUKAUUGAXHUUIXJAUUGVHXCEXIVIVLVJUUKUAEGFYPXEUUKHUFXFUUKIUF
    
UUKXGXJXJUKZYPEPAXJUULAXGXJXJJVMVNEFXIXIGHIUIVOUUKXHVKZXCXCGQZXCGQZYPXCGQXC
    
UUMUUNYPXCGUUMYTXMXMGQZOZCERBERZUUNYPOZAUURXJXHABCDEFGHIJKVPZVQXJXHUURUUSVF
    
ZAXHXJUVAUUQUUSUUNUUPOBCXCXIEEYKYTUUNUUPYKXLXCXLXCGYKVCZUVBTZVRYLUUPYPUUNYL
    
XMXIXMXIGYLVCZUVDTVSVTWAWBWCZUOUUKXHUUOXCOZAUUCXJXHUVFVFZUUDUUCUVGVFXJUUBUV
    
FBXCEYKUUAUUOXLXCYKYTUUNXLXCGUVCUVBTUVBSWDUFVAWLWEUUMXCUUNGQZXCYPGQXCUUMUUN
    
YPXCGUVEUPUUKXHUVHXCOZAXHUVIVFZXJAXLYTGQZXLOZBERZUVJABCDEFGHIJKWFZUVLUVIBXC
    
EYKUVKUVHXLXCYKXLXCYTUUNGUVBUVCTUVBSWDVOWGWLWEWHVOUUGUUIVGZTUVOSWIWJWKWLUUH
    
UUGMEGFUUNXEUUGHUFXFUUGIUFUUGXGXHXHUKZUUNEPAXHUVPAXGXHXHJVMVNEFXCXCGHIUIVOU
    
UGXJVKZNUSZUVRGQZUVRGQZUVROZUUNXIGQZXIONXIEUVQNMUMZVKZUVTUWBUVRXIUWDUVSUUNU
    
VRXIGUWDAXHUVREPZUKZUVSUUNOZUWDAXHUWEAXHXJUWCWMAXHXJUWCWNUVQUWCUWEXJUWCUWEV
    
FUUGXIEUVRVIWOWLWPZUWFUURUWGAXHUURUWEUUTWQZXHUWEUURUWGVFZAUWEXHUWJUUQUWGUVS
    
UUPOBCUVRXCEEBNUMZYTUVSUUPUWKXLUVRXLUVRGUWKVCZUWLTZVRCUAUMZUUPUUNUVSUWNXMXC
    
XMXCGUWNVCZUWOTVSVTZWAWRWCVOUVQUWCVGZTUWQSUUGXJVGZAUWANERZXHXJAUUCUWSUUDUUB
    
UWABNEUWKUUAUVTXLUVRUWKYTUVSXLUVRGUWMUWLTUWLSVDVEVQWSUVQUVRUVSGQZUVROZXIUUN
    
GQZXIONXIEUWDUWTUXBUVRXIUWDUVRXIUVSUUNGUWQUWDUWFUWGUWHUWFUWEXHVKZUURUWGXHUW
    
EUXCAXHUWEWTWRUWIUWPXAVOTUWQSUWRAUXANERZXHXJAUVMUXDUVNUVLUXABNEUWKUVKUWTXLU
    VRUWKXLUVRYTUVSGUWLUWMTUWLSVDVEVQWSWHXB $.
$}

There is a bit of a conflict between proof length and amount of DV 
conditions. So far, I've been inclined to prefer fewer DV conditions at the 
cost of longer proofs, because theorems can be used more easily later, as 
in the example above. What version do people usually prefer?  

-- 
You received this message because you are subscribed to the Google Groups 
"Metamath" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to [email protected].
To view this discussion visit 
https://groups.google.com/d/msgid/metamath/2210a3b4-d2dc-4d20-9745-1d561faf3862n%40googlegroups.com.

Reply via email to