Boa tarde!

Estou enferrujado.
Mas faria assim, e não vejo como aparecer PI() na resposta. Para mim é um
polinômio em z, aplicado em 0,2, o que dará um número racional.

Volume de z^2< x+y < 2z é igual ao volume de z^2 <= x+y <= 2z.

Int (0,2) Int (z2,2z) Int (z^2-y,^Z^2-x)  dxdydz. Os termos entre
parêntesis são os limites inferior e superior da integral. Int é o símbolo
da integral.

Como definir os intervalos de integração. O de x sai de graça z^2 < x + y <
2z. Basta jogar y para os dois lados da inequação.
Agora projetamos o sólido no Plano yZ, igualando x a 0 e obtemos que x
varia de z^2 a 2z.
Para achar o limite de z temos que z2<2z logo z varia de 0 a 2.
 Agora é resolver e verificar se dá a resposta,

Saudações,
PJMS



Em seg., 10 de fev. de 2020 às 13:25, Pedro José <petroc...@gmail.com>
escreveu:

> Boa tarde!
> Como no caso você tem a resposta, facilitaria se a expusesse.
> Para evitar que postemos soluções erradas.
>
> Saudações,
> PJMS
>
> Em qui., 6 de fev. de 2020 às 07:41, Anderson Torres <
> torres.anderson...@gmail.com> escreveu:
>
>> Em seg., 3 de fev. de 2020 às 20:55, Luiz Antonio Rodrigues
>> <rodrigue...@gmail.com> escreveu:
>> >
>> > Olá, pessoal!
>> > Tudo bem?
>> > Estou tentando resolver o seguinte problema:
>> >
>> > Ache o volume da região tridimensional definida por:
>> >
>> > z^2<x+y<2*z
>> >
>> > Sendo que:
>> > x>0 e y>0 e z>0
>> >
>> > Com o auxílio de um software eu consegui visualizar o sólido em questão.
>> > Eu calculei o volume do sólido girando em torno do eixo z e dividindo o
>> resultado por 4.
>> > A resposta que eu obtive foi (16*pi)/15, que não está correta.
>> > Já refiz os cálculos muitas vezes e chego sempre na mesma resposta.
>> > Alguém pode me ajudar?
>>
>> Tem como cê enviar as contas e o desenho que cê fez?
>>
>> > Muito obrigado e um abraço!
>> >
>> > --
>> > Esta mensagem foi verificada pelo sistema de antivírus e
>> > acredita-se estar livre de perigo.
>>
>> --
>> Esta mensagem foi verificada pelo sistema de antivírus e
>>  acredita-se estar livre de perigo.
>>
>>
>> =========================================================================
>> Instru�ões para entrar na lista, sair da lista e usar a lista em
>> http://www.mat.puc-rio.br/~obmlistas/obm-l.html
>> =========================================================================
>>
>

-- 
Esta mensagem foi verificada pelo sistema de antiv�rus e
 acredita-se estar livre de perigo.

Responder a