Boa tarde!
Para os |Naturais, temos os postulados de Peano.

Para os Inteiros há alguma formalização?

Acho pobre dizer que é necessário ter outros números devido ao problema de
fechamento nos naturais para a subtração que é fato e daí introduzir os
simétricos que são inteiros e ainda não foram caracterizados.

No meu antigo ginásio aprendi que os Reais era a união dos conjuntos
disjuntos irracionais e racionais. Os racionais haviam sido bem definidos.
Aí questionei e o que são irracionais? resposta: são os Reais que não são
racionais, os que não podem ser escritos na forma p/q p e q inteiros e
q<>0. Mas me deram um tombo. Definiram os |Reais com base nos irracionais e
os irracionais com base nos |Reais. 3 +2i também não pode ser inscrito na
forma p/q. Só mais tarde no científico, é que meu professor definiu
irracional como um número que não podia ser escrito na forma p/q e cuja
representação decimal tinha uma infinidade de algarismos, sem haver uma
periodicidade.
Na época foi o maior nó que tive com a matemática. O mestre demonstrou que
os racionais eram densos, mas entre eles ainda cabiam os irracionais. Não
satisfeito mostrou que os racionais eram enumeráveis e por absurdo mostrou
que os |Reais não. Não satisfeito mostrou que a cardinalidade do intervalo
[0,1] era maior que a dos |Naturais. Não conseguia conceber que havia um
infinito maior que outro. Outra coisa que demorei a aceitar,mesmo vendo a
bijeção, era que os inteiros e naturais tinham a mesma cardinalidade. Na
minha cabeça, os inteiros têm todos os naturais ainda sobram os negativos,
como é igual?
Hoje, depois de velho, arrumei uma enteada, que muito me pergunta e estou
enrolado. Para dar um ar de superioridade, questionei se conhecia os
inteiros de Gaus, que 5 não era primo nos inteiros de Gaus. Estrepei-me, a
danada foi pesquisar e me questiona sobre o que não tenho um domínio pleno.
Em suma, como apresentei a ela os postulados de Peano para a caracterização
dos Naturais, ela me cobra por algo semelhante para os Inteiros, e não sei
responder.
HELP! SOCORRO! AU SECOURS! AYUDA! AIUTO! HILFE!
Cordialmente,
PJMS

-- 
Esta mensagem foi verificada pelo sistema de antiv�rus e
 acredita-se estar livre de perigo.

Responder a