Hi all,

I ran a PGLS with two variables, call them VarA and VarB, using a phylogenetic 
tree and corPagel. When I try to predict VarA from VarB, I get a significant 
coefficient for VarB.  However, if I invert this and try to predict VarB from 
VarA, I do NOT get a significant coefficient for VarA. Shouldn't these be both 
significant, or both insignificant (the actual outputs and calls are pasted 
below)?

If I do a simple lm for these, I get the same significance level for the 
coefficients either way (i.e., lm(VarA ~ VarB) vs. lm(VarB ~ VarA), though the 
values of the coefficients of course differ. 

Can someone help me understand why the PGLS would not necessarily be symmetric 
in this same way?

Thanks,

-Tom

> outTree_group_by_brain_LambdaEst_redo1 <- gls(log_group_size_data ~ 
> log_brain_weight_data, correlation = bm.t.100species_lamEst_redo1,data = 
> DF.brain.repertoire.group, method= "ML")
> summary(outTree_group_by_brain_LambdaEst_redo1)
Generalized least squares fit by maximum likelihood
  Model: log_group_size_data ~ log_brain_weight_data 
  Data: DF.brain.repertoire.group 
       AIC     BIC    logLik
  89.45152 99.8722 -40.72576
Correlation Structure: corPagel
 Formula: ~1 
 Parameter estimate(s):
   lambda 
0.7522738 
Coefficients:
                           Value Std.Error   t-value p-value
(Intercept)           -0.0077276 0.2628264 -0.029402  0.9766
log_brain_weight_data  0.4636859 0.1355499  3.420778  0.0009

 Correlation: 
                      (Intr)
log_brain_weight_data -0.637
Standardized residuals:
       Min         Q1        Med         Q3        Max 
-1.7225003 -0.1696079  0.5753531  1.0705308  3.0685637 
Residual standard error: 0.5250319 
Degrees of freedom: 100 total; 98 residual


Here is the inverse:

> outTree_brain_by_group_LambdaEst_redo1 <- gls(log_brain_weight_data ~ 
> log_group_size_data, correlation = bm.t.100species_lamEst_redo1,data = 
> DF.brain.repertoire.group, method= "ML")
> summary(outTree_brain_by_group_LambdaEst_redo1)
Generalized least squares fit by maximum likelihood
  Model: log_brain_weight_data ~ log_group_size_data 
  Data: DF.brain.repertoire.group 
        AIC       BIC   logLik
  -39.45804 -29.03736 23.72902
Correlation Structure: corPagel
 Formula: ~1 
 Parameter estimate(s):
  lambda 
1.010277 
Coefficients:
                         Value  Std.Error   t-value p-value
(Intercept)          1.2244133 0.20948634  5.844836  0.0000
log_group_size_data -0.0234525 0.03723828 -0.629796  0.5303
 Correlation: 
                    (Intr)
log_group_size_data -0.095
Standardized residuals:
       Min         Q1        Med         Q3        Max 
-2.0682836 -0.3859688  1.1515176  1.5908565  3.1163377 
Residual standard error: 0.4830596 
Degrees of freedom: 100 total; 98 residual
 
_________________________________________________
P. Thomas Schoenemann

Associate Professor
Department of Anthropology
Cognitive Science Program
Indiana University
Bloomington, IN  47405
Phone: 812-855-8800
E-mail: t...@indiana.edu

Open Research Scan Archive (ORSA) Co-Director
Consulting Scholar
Museum of Archaeology and Anthropology
University of Pennsylvania

http://www.indiana.edu/~brainevo











        [[alternative HTML version deleted]]

_______________________________________________
R-sig-phylo mailing list - R-sig-phylo@r-project.org
https://stat.ethz.ch/mailman/listinfo/r-sig-phylo
Searchable archive at http://www.mail-archive.com/r-sig-phylo@r-project.org/

Reply via email to