[Vo]:Re:Some fusion reaction tables of possible interest

2010-01-02 Thread Horace Heffner

B, Ag, and C now added to the equation collection:

http://www.mtaonline.net/~hheffner/B_LENR.pdf

http://www.mtaonline.net/~hheffner/AgLENR.pdf

http://www.mtaonline.net/~hheffner/C_LENR.pdf

Best regards,

Horace Heffner
http://www.mtaonline.net/~hheffner/






[Vo]:Re:Some fusion reaction tables of possible interest

2010-01-02 Thread Horace Heffner

Nb, Ag, Ta, W, Mo, V, Ba, and U now added to the equation collection:

http://www.mtaonline.net/~hheffner/NbLENR.pdf

http://www.mtaonline.net/~hheffner/AgLENR.pdf

http://www.mtaonline.net/~hheffner/TaLENR.pdf

http://www.mtaonline.net/~hheffner/W_LENR.pdf

http://www.mtaonline.net/~hheffner/MoLENR.pdf

http://www.mtaonline.net/~hheffner/V_LENR.pdf

http://www.mtaonline.net/~hheffner/BaLENR.pdf

http://www.mtaonline.net/~hheffner/U_LENR.pdf

The U allows for limited radioactive products. Still amazing how few  
products are feasible.


Best regards,

Horace Heffner
http://www.mtaonline.net/~hheffner/






[Vo]:Re:Some fusion reaction tables of possible interest

2010-01-02 Thread Horace Heffner
The full picture has not yet emerged.  The reactions in which the  
deflated electron binding energy exceeds the fusion energy are high  
probability candidates for weak reactions, due to the longevity of  
the initial fused nucleus, and the prolonged presence of the  
electrons. The electrons decrease the stability of the neutrons, thus  
enhancing the probability of neutron beta decay.  In some cases the  
probability of electron capture is also increased. Most important to  
confirmation of the deflation fusion theory,  reactions with very  
negative net energy (in brackets), but positive fusion energy, are  
the best candidates for strange exchange reactions and K0 production.  
These heavy LENR reactions are fostered by use of extreme magnetic  
field gradients, which can be imposed by ambient fields, or better by  
powerful coherent EM radiation.  Some examples of such reactions are:


90Zr40 + D -- 71Ga31 + 21Ne10 + 00.236 MeV [-11.772 MeV] ( 1 )
90Zr40 + D -- 91Zr40 + 1H1 + 4.970 MeV [-7.038 MeV] ( 2 )
90Zr40 + 2 D -- 68Zn30 + 26Mg12 + 23.722 MeV [-0.720 MeV] ( 9 )
90Zr40 + 2 D -- 70Zn30 + 24Mg12 + 20.996 MeV [-3.446 MeV] ( 10 )
90Zr40 + 2 D -- 71Ga31 + 23Na11 + 17.170 MeV [-7.272 MeV] ( 11 )
90Zr40 + 2 D -- 72Ge32 + 22Ne10 + 18.113 MeV [-6.329 MeV] ( 12 )
90Zr40 + 2 D -- 73Ge32 + 21Ne10 + 14.533 MeV [-9.909 MeV] ( 13 )
90Zr40 + 2 D -- 74Ge32 + 20Ne10 + 17.968 MeV [-6.474 MeV] ( 14 )
90Zr40 + 2 D -- 75As33 + 19F9 + 12.024 MeV [-12.418 MeV] ( 15 )
90Zr40 + 2 D -- 76Se34 + 18O8 + 13.538 MeV [-10.904 MeV] ( 16 )
90Zr40 + 2 D -- 77Se34 + 17O8 + 12.911 MeV [-11.531 MeV] ( 17 )
90Zr40 + 2 D -- 78Se34 + 16O8 + 19.266 MeV [-5.176 MeV] ( 18 )
90Zr40 + 2 D -- 79Br35 + 15N7 + 13.470 MeV [-10.972 MeV] ( 19 )
90Zr40 + 2 D -- 82Kr36 + 12C6 + 18.092 MeV [-6.350 MeV] ( 20 )
90Zr40 + 2 D -- 90Zr40 + 4He2 + 23.847 MeV [-0.595 MeV] ( 21 )
90Zr40 + 2 D -- 91Zr40 + 3He2 + 10.464 MeV [-13.978 MeV] ( 22 )
90Zr40 + 2 D -- 93Nb41 + 1H1 + 17.423 MeV [-7.019 MeV] ( 23 )
90Zr40 + 2 D -- 94Mo42 + 25.914 MeV [1.472 MeV] ( 24 )

42Ca20 + D -- 40K19 + 4He2 + 5.699 MeV [-1.979 MeV] ( 26 )
42Ca20 + D -- 43Ca20 + 1H1 + 5.708 MeV [-1.970 MeV] ( 27 )

46Ti22 + D -- 47Ti22 + 1H1 + 6.653 MeV [-1.552 MeV] ( 1 )
46Ti22 + 2 D -- 26Mg12 + 24Mg12 + 12.293 MeV [-4.629 MeV] ( 3 )
46Ti22 + 2 D -- 27Al13 + 23Na11 + 8.872 MeV [-8.051 MeV] ( 4 )
46Ti22 + 2 D -- 28Si14 + 22Ne10 + 11.662 MeV [-5.261 MeV] ( 5 )
46Ti22 + 2 D -- 29Si14 + 21Ne10 + 9.772 MeV [-7.151 MeV] ( 6 )
46Ti22 + 2 D -- 30Si14 + 20Ne10 + 13.621 MeV [-3.302 MeV] ( 7 )
46Ti22 + 2 D -- 31P15 + 19F9 + 8.074 MeV [-8.849 MeV] ( 8 )
46Ti22 + 2 D -- 32S16 + 18O8 + 8.944 MeV [-7.979 MeV] ( 9 )
46Ti22 + 2 D -- 33S16 + 17O8 + 9.541 MeV [-7.382 MeV] ( 10 )
46Ti22 + 2 D -- 34S16 + 16O8 + 16.814 MeV [-0.109 MeV] ( 11 )
46Ti22 + 2 D -- 35Cl17 + 15N7 + 11.057 MeV [-5.865 MeV] ( 12 )
46Ti22 + 2 D -- 38Ar18 + 12C6 + 16.861 MeV [-0.062 MeV] ( 13 )
46Ti22 + 2 D -- 39K19 + 11B5 + 7.285 MeV [-9.638 MeV] ( 14 )
46Ti22 + 2 D -- 40K19 + 10B5 + 3.630 MeV [-13.293 MeV] ( 15 )
46Ti22 + 2 D -- 46Ti22 + 4He2 + 23.847 MeV [6.924 MeV] ( 16 )
46Ti22 + 2 D -- 47Ti22 + 3He2 + 12.146 MeV [-4.776 MeV] ( 17 )

Zr is most interesting because both Zr + D reactions are weak  
reaction candidates.  All the above kinds of candidate reactions must  
be re-worked to include weak reaction prospects.


Best regards,

Horace Heffner
http://www.mtaonline.net/~hheffner/






[Vo]:Re:Some fusion reaction tables of possible interest

2010-01-02 Thread Horace Heffner

Oxygen should not be overlooked as a powerful weak reaction candidate:

   16O8  + D  -- 14N7  + 4He2  + 3.111 MeV   [-1.026  
MeV]   ( 1 )
   16O8  + D  -- 17O8  + 1H1  + 1.919 MeV   [-2.218  
MeV]( 2 )


   16O8  + 2 D  -- 14N7  + 6Li3  + 4.585 MeV   [-4.402  
MeV] ( 3 )
   16O8  + 2 D  -- 17O8  + 3He2  + 7.412 MeV   [-1.575  
MeV] ( 5 )


Best regards,

Horace Heffner
http://www.mtaonline.net/~hheffner/






[Vo]:Re:Some fusion reaction tables of possible interest

2010-01-02 Thread Horace Heffner
The recent examination of deflation fusion scenarios indicate high  
voltage Zr electrolysis in the blue-green glow range may be useful to  
look for weak reactions and strange matter creation.


I have run Zr electrode pairs in AC electrospark experiments at over  
400 V. The breakdown voltage for conditioned electrodes was observed  
to be in the 280-320 V range.  It is important to never exceed  
breakdown voltage to run in the glow range.  It is important to  
slowly condition Zr so as to avoid going into the electrospark range  
and thus destroying the Zr electrodes. See:


http://www.mtaonline.net/~hheffner/GlowExper.pdf

For an example of what not to do, i.e. push power before conditioning  
so as to go into an electrospark range, instead of a glow range, and  
destroy the ZrO surface by perforating it, see:


http://www.mtaonline.net/~hheffner/OrangeGlow.pdf

A useful electrolyte might be obtained using either saturated  
pickling lime, i.e. CaO, or boric acid.  Alternating between acidic  
and basic electrolytes may be useful for long term running.


Current can be controlled using a two cells in series system, one  
with low conductivity to act only as a resister, that resistance  
varied by adding salts, the other being the live cell.


Glow activity, as well as LENR, may produce UV or EUV.  Dyes, such as  
fluorescein or rhodamine 6G, may be useful for observing or  
photographing active areas, and developing a conditioning protocol.


After long running in a glow regime, the Zr electrodes can be heated  
in a vacuum as a HV anode, in order to emit atoms for accelerating to  
a target at voltages of 10 keV or more.  If high energy reactions are  
observed in the target are then this wold be a possible indication of  
strange matter creation.


Best regards,

Horace Heffner
http://www.mtaonline.net/~hheffner/






[Vo]:Re:Some fusion reaction tables of possible interest

2010-01-01 Thread Horace Heffner
The following tables now include more reaction equations, an extra  
energy entry for fusion energy minus deflated electron binding  
energy, and some typo corrections:


http://www.mtaonline.net/~hheffner/ZrLENR.pdf

http://www.mtaonline.net/~hheffner/PdLENR.pdf

http://www.mtaonline.net/~hheffner/AlLENR.pdf

http://www.mtaonline.net/~hheffner/NiLENR.pdf

http://www.mtaonline.net/~hheffner/TiLENR.pdf

http://www.mtaonline.net/~hheffner/CaLENR.pdf

Something I find very interesting is the way lattice elements can act  
in a purely catalytic fashion.  Some examples follow.


   27Al13  + 2 D  -- 29Si14  + 2H1  + 17.833 MeV   [5.753  
MeV]  ( 11 )
   27Al13  + 2 D  -- 30Si14  + 1H1  + 26.218 MeV   [14.138  
MeV] ( 12 )
   27Al13  + 5 D  -- 27Al13  + 10B5  + 53.628 MeV   [19.056  
MeV]( 42 )
   27Al13  + 6 D  -- 27Al13  + 12C6  + 78.814 MeV   [35.652  
MeV]( 52 )


   40Ca20  + 2 D  -- 40Ca20  + 4He2  + 23.847 MeV   [7.723  
MeV] ( 4 )
   40Ca20  + 6 D  -- 40Ca20  + 12C6  + 78.814 MeV   [24.349  
MeV]( 17 )
   40Ca20  + 8 D  -- 40Ca20  + 16O8  + 109.822 MeV   [33.305  
MeV]   ( 22 )


   58Ni28  + 2 D  -- 58Ni28  + 4He2  + 23.847 MeV   [3.986  
MeV] ( 13 )
   58Ni28  + 3 D  -- 58Ni28  + 6Li3  + 25.321 MeV   [-5.173  
MeV]( 20 )
   58Ni28  + 5 D  -- 58Ni28  + 10B5  + 53.628 MeV   [00.501  
MeV]( 36 )


   46Ti22  + D  -- 47Ti22  + 1H1  + 6.653 MeV   [-1.552  
MeV]( 1 )
   46Ti22  + 2 D  -- 46Ti22  + 4He2  + 23.847 MeV   [6.924  
MeV] ( 16 )
   46Ti22  + 2 D  -- 47Ti22  + 3He2  + 12.146 MeV   [-4.776  
MeV]( 17 )
   46Ti22  + 3 D  -- 46Ti22  + 6Li3  + 25.321 MeV   [-0.822  
MeV]( 28 )


   102Pd46  + 2 D  -- 102Pd46  + 4He2  + 23.847 MeV   [-3.072  
MeV]  ( 44 )
   102Pd46  + 3 D  -- 102Pd46  + 6Li3  + 25.321 MeV   [-15.660  
MeV] ( 59 )


   90Zr40  + D  -- 91Zr40  + 1H1  + 4.970 MeV   [-7.038  
MeV]( 2 )
   90Zr40  + 2 D  -- 90Zr40  + 4He2  + 23.847 MeV   [-0.595  
MeV]( 21 )
   90Zr40  + 2 D  -- 91Zr40  + 3He2  + 10.464 MeV   [-13.978  
MeV]   ( 22 )
   90Zr40  + 3 D  -- 90Zr40  + 6Li3  + 25.321 MeV   [-11.974  
MeV]   ( 33 )


What is interesting about this is the lattice elements are much  
closer to the hydrogen than other hydrogen atoms.  If the hydrogen is  
in the deflated state, it is much more probable it will tunnel to a  
lattice nucleus.  The lattice nucleus can thus act as a catalyst for  
multiple simultaneous deuteron reactions which would otherwise not be  
feasible under less than extreme loading conditions.


Best regards,

Horace Heffner
http://www.mtaonline.net/~hheffner/






[Vo]:Re:Some fusion reaction tables of possible interest

2010-01-01 Thread Horace Heffner

Here is a corrected sample list of some heavy LENR catalytic reactions:

   27Al13  + 2 D  -- 27Al13  + 4He2  + 23.847 MeV   [11.767  
MeV]( 10 )
   27Al13  + 5 D  -- 27Al13  + 10B5  + 53.628 MeV   [19.056  
MeV]( 42 )
   27Al13  + 6 D  -- 27Al13  + 12C6  + 78.814 MeV   [35.652  
MeV]( 52 )


   40Ca20  + 2 D  -- 40Ca20  + 4He2  + 23.847 MeV   [7.723  
MeV] ( 4 )
   40Ca20  + 6 D  -- 40Ca20  + 12C6  + 78.814 MeV   [24.349  
MeV]( 17 )
   40Ca20  + 8 D  -- 40Ca20  + 16O8  + 109.822 MeV   [33.305  
MeV]   ( 22 )


   58Ni28  + 2 D  -- 58Ni28  + 4He2  + 23.847 MeV   [3.986  
MeV] ( 13 )
   58Ni28  + 3 D  -- 58Ni28  + 6Li3  + 25.321 MeV   [-5.173  
MeV]( 20 )
   58Ni28  + 5 D  -- 58Ni28  + 10B5  + 53.628 MeV   [00.501  
MeV]( 36 )


   46Ti22  + D  -- 47Ti22  + 1H1  + 6.653 MeV   [-1.552  
MeV]( 1 )
   46Ti22  + 2 D  -- 46Ti22  + 4He2  + 23.847 MeV   [6.924  
MeV] ( 16 )
   46Ti22  + 2 D  -- 47Ti22  + 3He2  + 12.146 MeV   [-4.776  
MeV]( 17 )
   46Ti22  + 3 D  -- 46Ti22  + 6Li3  + 25.321 MeV   [-0.822  
MeV]( 28 )


   102Pd46  + 2 D  -- 102Pd46  + 4He2  + 23.847 MeV   [-3.072  
MeV]  ( 44 )
   102Pd46  + 3 D  -- 102Pd46  + 6Li3  + 25.321 MeV   [-15.660  
MeV] ( 59 )


   90Zr40  + D  -- 91Zr40  + 1H1  + 4.970 MeV   [-7.038  
MeV]( 2 )
   90Zr40  + 2 D  -- 90Zr40  + 4He2  + 23.847 MeV   [-0.595  
MeV]( 21 )
   90Zr40  + 2 D  -- 91Zr40  + 3He2  + 10.464 MeV   [-13.978  
MeV]   ( 22 )
   90Zr40  + 3 D  -- 90Zr40  + 6Li3  + 25.321 MeV   [-11.974  
MeV]   ( 33 )


What is interesting about this is the lattice elements are much  
closer to the hydrogen than other hydrogen atoms.  If the hydrogen is  
in the deflated state, it is much more probable it will tunnel to a  
lattice nucleus.  The lattice nucleus can thus act as a catalyst for  
multiple simultaneous deuteron reactions which would otherwise not be  
feasible under less than extreme loading conditions.


Best regards,

Horace Heffner
http://www.mtaonline.net/~hheffner/






[Vo]:Re:Some fusion reaction tables of possible interest

2010-01-01 Thread Horace Heffner
The following style graphic is now available for Zr, Pd, Al, Ni, Ti,  
and Ca:


Energetically Feasible Ca LENR Reactions Creating Only Stable Products

Combined Fusion Product Data for Ca + n D reactions

Relative Percent
  Abs.  0   10   20   30   40   50   60   70   80   90  100
  Z  Percent El.|||||||||||
  1   8.389  H  |**
  2  12.027  He |*
  3   2.347  Li |**
  4   1.035  Be |*
  5   1.729  B  |
  6   3.716  C  |
  7   2.033  N  |*
  8   4.156  O  |*
  9  00.644  F  |
 10   2.862  Ne |
 11   1.246  Na |**
 12   4.638  Mg |***
 13  00.631  Al |
 14   3.767  Si |
 15  00.842  P  |
 16   4.983  S  |*
 17   1.662  Cl |
 18   1.784  Ar |
 19   4.451  K  |***
 20  11.866  Ca |
 21   9.751  Sc |
 22  12.624  Ti | 
***

 23   1.554  V  |***
 24   1.263  Cr |**
|||||||||||
0   10   20   30   40   50   60   70   80   90  100

Note: the above data excludes fusion with more than 4 D. It is weighted
  by source isotope abundance, the square of the ratio of fusion
  energy to deflated hydrogen binding energy, and inversely as the
  square of the number of deuterons fused.

This graph type is located on the last pages of:

http://www.mtaonline.net/~hheffner/ZrLENR.pdf

http://www.mtaonline.net/~hheffner/PdLENR.pdf

http://www.mtaonline.net/~hheffner/AlLENR.pdf

http://www.mtaonline.net/~hheffner/NiLENR.pdf

http://www.mtaonline.net/~hheffner/TiLENR.pdf

http://www.mtaonline.net/~hheffner/CaLENR.pdf

Best regards,

Horace Heffner
http://www.mtaonline.net/~hheffner/