On Wed, 15 Mar 2023 09:41:30 GMT, Roman Kennke <rken...@openjdk.org> wrote:

>> This change adds a fast-locking scheme as an alternative to the current 
>> stack-locking implementation. It retains the advantages of stack-locking 
>> (namely fast locking in uncontended code-paths), while avoiding the overload 
>> of the mark word. That overloading causes massive problems with Lilliput, 
>> because it means we have to check and deal with this situation when trying 
>> to access the mark-word. And because of the very racy nature, this turns out 
>> to be very complex and would involve a variant of the inflation protocol to 
>> ensure that the object header is stable. (The current implementation of 
>> setting/fetching the i-hash provides a glimpse into the complexity).
>> 
>> What the original stack-locking does is basically to push a stack-lock onto 
>> the stack which consists only of the displaced header, and CAS a pointer to 
>> this stack location into the object header (the lowest two header bits being 
>> 00 indicate 'stack-locked'). The pointer into the stack can then be used to 
>> identify which thread currently owns the lock.
>> 
>> This change basically reverses stack-locking: It still CASes the lowest two 
>> header bits to 00 to indicate 'fast-locked' but does *not* overload the 
>> upper bits with a stack-pointer. Instead, it pushes the object-reference to 
>> a thread-local lock-stack. This is a new structure which is basically a 
>> small array of oops that is associated with each thread. Experience shows 
>> that this array typcially remains very small (3-5 elements). Using this lock 
>> stack, it is possible to query which threads own which locks. Most 
>> importantly, the most common question 'does the current thread own me?' is 
>> very quickly answered by doing a quick scan of the array. More complex 
>> queries like 'which thread owns X?' are not performed in very 
>> performance-critical paths (usually in code like JVMTI or deadlock 
>> detection) where it is ok to do more complex operations (and we already do). 
>> The lock-stack is also a new set of GC roots, and would be scanned during 
>> thread scanning, possibly concurrently, via the normal 
 protocols.
>> 
>> The lock-stack is grown when needed. This means that we need to check for 
>> potential overflow before attempting locking. When that is the case, locking 
>> fast-paths would call into the runtime to grow the stack and handle the 
>> locking. Compiled fast-paths (C1 and C2 on x86_64 and aarch64) do this check 
>> on method entry to avoid (possibly lots) of such checks at locking sites.
>> 
>> In contrast to stack-locking, fast-locking does *not* support recursive 
>> locking (yet). When that happens, the fast-lock gets inflated to a full 
>> monitor. It is not clear if it is worth to add support for recursive 
>> fast-locking.
>> 
>> One trouble is that when a contending thread arrives at a fast-locked 
>> object, it must inflate the fast-lock to a full monitor. Normally, we need 
>> to know the current owning thread, and record that in the monitor, so that 
>> the contending thread can wait for the current owner to properly exit the 
>> monitor. However, fast-locking doesn't have this information. What we do 
>> instead is to record a special marker ANONYMOUS_OWNER. When the thread that 
>> currently holds the lock arrives at monitorexit, and observes 
>> ANONYMOUS_OWNER, it knows it must be itself, fixes the owner to be itself, 
>> and then properly exits the monitor, and thus handing over to the contending 
>> thread.
>> 
>> As an alternative, I considered to remove stack-locking altogether, and only 
>> use heavy monitors. In most workloads this did not show measurable 
>> regressions. However, in a few workloads, I have observed severe 
>> regressions. All of them have been using old synchronized Java collections 
>> (Vector, Stack), StringBuffer or similar code. The combination of two 
>> conditions leads to regressions without stack- or fast-locking: 1. The 
>> workload synchronizes on uncontended locks (e.g. single-threaded use of 
>> Vector or StringBuffer) and 2. The workload churns such locks. IOW, 
>> uncontended use of Vector, StringBuffer, etc as such is ok, but creating 
>> lots of such single-use, single-threaded-locked objects leads to massive 
>> ObjectMonitor churn, which can lead to a significant performance impact. But 
>> alas, such code exists, and we probably don't want to punish it if we can 
>> avoid it.
>> 
>> This change enables to simplify (and speed-up!) a lot of code:
>> 
>> - The inflation protocol is no longer necessary: we can directly CAS the 
>> (tagged) ObjectMonitor pointer to the object header.
>> - Accessing the hashcode could now be done in the fastpath always, if the 
>> hashcode has been installed. Fast-locked headers can be used directly, for 
>> monitor-locked objects we can easily reach-through to the displaced header. 
>> This is safe because Java threads participate in monitor deflation protocol. 
>> This would be implemented in a separate PR
>> 
>> 
>> Testing:
>>  - [x] tier1 x86_64 x aarch64 x +UseFastLocking
>>  - [x] tier2 x86_64 x aarch64 x +UseFastLocking
>>  - [x] tier3 x86_64 x aarch64 x +UseFastLocking
>>  - [x] tier4 x86_64 x aarch64 x +UseFastLocking
>>  - [x] tier1 x86_64 x aarch64 x -UseFastLocking
>>  - [x] tier2 x86_64 x aarch64 x -UseFastLocking
>>  - [x] tier3 x86_64 x aarch64 x -UseFastLocking
>>  - [x] tier4 x86_64 x aarch64 x -UseFastLocking
>>  - [x] Several real-world applications have been tested with this change in 
>> tandem with Lilliput without any problems, yet
>> 
>> ### Performance
>> 
>> #### Simple Microbenchmark
>> 
>> The microbenchmark exercises only the locking primitives for monitorenter 
>> and monitorexit, without contention. The benchmark can be found 
>> (here)[https://github.com/rkennke/fastlockbench]. Numbers are in ns/ops.
>> 
>> |  | x86_64 | aarch64 |
>> | -- | -- | -- |
>> | -UseFastLocking | 20.651 | 20.764 |
>> | +UseFastLocking | 18.896 | 18.908 |
>> 
>> 
>> #### Renaissance
>> 
>>   | x86_64 |   |   |   | aarch64 |   |  
>> -- | -- | -- | -- | -- | -- | -- | --
>>   | stack-locking | fast-locking |   |   | stack-locking | fast-locking |  
>> AkkaUct | 841.884 | 836.948 | 0.59% |   | 1475.774 | 1465.647 | 0.69%
>> Reactors | 11041.427 | 11181.451 | -1.25% |   | 11381.751 | 11521.318 | 
>> -1.21%
>> Als | 1367.183 | 1359.358 | 0.58% |   | 1678.103 | 1688.067 | -0.59%
>> ChiSquare | 577.021 | 577.398 | -0.07% |   | 986.619 | 988.063 | -0.15%
>> GaussMix | 817.459 | 819.073 | -0.20% |   | 1154.293 | 1155.522 | -0.11%
>> LogRegression | 598.343 | 603.371 | -0.83% |   | 638.052 | 644.306 | -0.97%
>> MovieLens | 8248.116 | 8314.576 | -0.80% |   | 7569.219 | 7646.828 | -1.01%%
>> NaiveBayes | 587.607 | 581.608 | 1.03% |   | 541.583 | 550.059 | -1.54%
>> PageRank | 3260.553 | 3263.472 | -0.09% |   | 4376.405 | 4381.101 | -0.11%
>> FjKmeans | 979.978 | 976.122 | 0.40% |   | 774.312 | 771.235 | 0.40%
>> FutureGenetic | 2187.369 | 2183.271 | 0.19% |   | 2685.722 | 2689.056 | 
>> -0.12%
>> ParMnemonics | 2434.551 | 2468.763 | -1.39% |   | 4278.225 | 4263.863 | 0.34%
>> Scrabble | 111.882 | 111.768 | 0.10% |   | 151.796 | 153.959 | -1.40%
>> RxScrabble | 210.252 | 211.38 | -0.53% |   | 310.116 | 315.594 | -1.74%
>> Dotty | 750.415 | 752.658 | -0.30% |   | 1033.636 | 1036.168 | -0.24%
>> ScalaDoku | 3072.05 | 3051.2 | 0.68% |   | 3711.506 | 3690.04 | 0.58%
>> ScalaKmeans | 211.427 | 209.957 | 0.70% |   | 264.38 | 265.788 | -0.53%
>> ScalaStmBench7 | 1017.795 | 1018.869 | -0.11% |   | 1088.182 | 1092.266 | 
>> -0.37%
>> Philosophers | 6450.124 | 6565.705 | -1.76% |   | 12017.964 | 11902.559 | 
>> 0.97%
>> FinagleChirper | 3953.623 | 3972.647 | -0.48% |   | 4750.751 | 4769.274 | 
>> -0.39%
>> FinagleHttp | 3970.526 | 4005.341 | -0.87% |   | 5294.125 | 5296.224 | -0.04%
>
> Roman Kennke has updated the pull request incrementally with three additional 
> commits since the last revision:
> 
>  - More RISCV changes (by Fei Yang)
>  - Use -w instructions in fast_unlock()
>  - Increase stub size of C2HandleAnonOwnerStub to 18

I like -XX:+UseNewLocks, too. I wouldn't overcomplicate things: this flag is 
meant to be transitional, it is not meant to be used by end-users (except the 
bravest nerds) at all. When it lands, the Lilliput flag (e.g. 
+UseCompactObjectHeaders) will also control the locking flag. Eventually (e.g. 
release+1) both flags would become on by default and afterwards (e.g. 
release+2) would go away entirely, at which point the whole original 
stack-locking would disappear.

-------------

PR: https://git.openjdk.org/jdk/pull/10907

Reply via email to