On Feb 11, 2013, at 11:06 PM, Chuck Sites wrote:

Hi Ed. Again sorry for the delayed response and right now all I can give is a quick response.

Kim's theory is interesting as it's been refined more and more towards effects at the nano-scale and he's also incorporating proton descriptions that may allow his theory to describe H in Ni. Kim's work is some of the best I've read.

Chuck, have you read my explanation? I'm able to describe all observations using internally consist logic and very few assumptions. In addition, I predict that the H-Ni reaction is not the source of energy being claimed by Rossi et al. Any theory that attempts to justify the H-Ni reaction as the source of claimed energy is open to test because, if I'm right, such a theory is useless because it predicts something that does not happen. I predict deuterium is the source of heat based on a mechanism that also explains all other reactions. I'm waiting patiently for the necessary measurements to be made.

As for my theory, I find that most people do not understand what I'm actually describing. They superimpose their own ideas with great confidence rather than understand what I describe even though I try to be very clear. Consequently, I have been writing a series of papers in an attempt to keep up with the confusion and explain what I'm actually proposing.

But H/D in Metals really follow physics of solid state just with opposite charge and heavier weights. For that reason the Chubbs' seems very plausible.

Chubb proposes mass-wave conversion within the lattice. This phenomenon has only been proposed as a mathematical method to explain very weak processes. The idea is hard to justify being the cause of a nuclear reaction and it does not predict all that is observed.

If you don't think the wave function overlap is important to the fusion processes, I think you need to consider what the Gamow factor is based on. It's the quantum wave function that describes how two particles can interact strongly through the Coulomb barrier. It's the Gamow factor that really makes the BEC's so interesting.

The Gamow equation only provides a relationship between distance and the force being created by a charge. It says nothing about what creates the charge or how it can be overcome except by applying an opposite force. The term "quantum wave function" only identifies a mathematical tool, not anything real. People act as if wave functions were real rather than a method to apply a mathematical concept based on a series of assumptions

Even in your Nuclear active sites, suppression of Coulomb barrier has to occur, and an n-body interactions has to occur.

Yes, but I propose a process that can do this in increments. I agree, this process is where the hole in knowledge is located which everyone is trying to fill different ways.

I understand Kim's theory and I also understand the Chubbs' theory. What makes the Active Nuclear sites a better theory (or concept) than that of a nuclear active BEC in metal?

The NAE is consistent with observation while the other concepts are not. I explain this assertion in my papers, so I don't need to waste our time doing it here.

Ed


Best Regards,
Chuck

On Sun, Feb 10, 2013 at 4:41 PM, Edmund Storms <stor...@ix.netcom.com> wrote: Chuck, we have three separate and independent questions here. First, can a BEC based on atoms form in a lattice at room temperature. In spite of Kim, theory says this is not possible. Second, can such a cluster lead to fusion? My answer is NO because the nuclear charge is not eliminated by forming a BEC. Yes, wave functions can overlay, but this is essentially a chemical process that would not affect the nucleus because too little energy is involved. Third, will the resulting fusion reaction produce hot fusion or cold fusion? My answer is that hot fusion must result because no part of the process can dissipate the energy before fusion takes place. It is not enough to just throw out an idea with a little math and claim this explains anything. The entire process must be described in a logically connected way.

My theory attempts to do this. Yes, some previous ideas might be applied, but only as PART of the process.

Ed

On Feb 10, 2013, at 2:07 PM, Chuck Sites wrote:

HI Ed,

I think it is apparent that a BEC in it's normal sense with temps at near absolute zero is out of the question as you note. There are too many problems like the coupling of the lattice to the fusion reaction. Still if you review Kim's several presentations over the years he has developed a consistent and testable theoretical frame work for a N-body mechanism of cold fusion at and above room temperatures. I've always thought the physics was intriguing regardless of the nuclear aspects, that a condensate deuterium ions (or positive Bose ions or even virtual integer spin particles) could even form in a metal lattice.

I also like the Chubbs' concepts and it's evaluation of deuterium ions moving through a lattice and creating something new in physics, Bose-Band states. In a periodic potential created by the host metal, you can work out a system where the bose deuterons form quantum band states like the electron band states found in solid state physics realm. However, unlike electrons that have to obay the Polli exclusion principle, particles in the Bose band could occupy the same state, and from BE statistics would prefer to occupy the bands grounds states. It even seems likely that the Bose-band could even be superconducting with respect to the ion channels which would show up as a drop in resistance, something that people have observed. It seems possible that H2 molecules (or pseudo-H2 molecules in a metal lattice like Ni) could also have bose band states.

Even your suggestion Dr. Storm the hydrogen (H or D) could collect in lattice dislocations is interesting with respect to either Kim's or Chubbs' work. For example a long 1-D chain of deuterons might have some really unusual quantum states just due to the 1- dimensional nature of the chain. It might fit a kronig-penny model of periodic potentials and have even better potential of N- body fusion because of the quantum geometry.

As far as why a BEC might result in nuclear fusion, there is a couple of papers that were published years prior to P&F's big announce by Richard L Liboff on D fusion rates in degenerate gas (a BEC), basically from the overlapping wave functions from 2 D ions. It may have appeared in Physics Letters circa 1977.

http://scholar.google.com/scholar?q=R.+L.+Liboff+BOSE&btnG=&hl=en&as_sdt=1%2C18

http://link.springer.com/article/10.1007%2FBF01050663?LI=true

What is fun reading Liboff's work is he is talking very very cold fusion! Near absolute zero cold fusion!

Anyway, that's the basis of my naive understanding the BEC concepts for LERN. No doubt there is much more to learn and discover.

Best Regards,
Chuck
-----

On Sat, Feb 9, 2013 at 10:07 AM, Edmund Storms <stor...@ix.netcom.com> wrote: Chuck, consider these issues. First, the BEC between atoms has not been shown to occur except near absolute zero. The claim for such a structure between hypothetical particles based on a form of concentrated energy within a structure really does not apply. Second. once a BEC forms, why would you think it would result in a nuclear reaction? Third, if a fusion reaction occurred, why would it not take the form of hot fusion? After all, the energy has to be dissipated by a process that is not in evidence in the BEC. This idea is based on a series of assumptions having no relationship to the theory of the BEC and total ignorance about the electron structure in PdD. What constitutes a boson is even uncertain in such a structure.

I suggest you read my explanation.

Ed

On Feb 8, 2013, at 11:33 PM, Chuck Sites wrote:

Its great to read Kim's reply. I;ve followed Dr. YE Kim's work for years along with the Scott and Talbot Chubbs. I was convinced years ago, that the only mechanism that would work for cold fusion was a BEC. A Bose Einstein Condensate. It's a known physics fact that particles that enter the BEC state form a single quantum state, and become something that is just best described as weird. The actual matter wave (the De Broglie wave) that describes matter at the smallest scales, overlaps. When you have overlapping waveforms of a particle that has an attractive nuclear potential, they just snap together within very well defined probabilities. It's the particles waveform overlap that will induce fusion.

What Kim shows is that within solids metals, deuterium ions screened and charge neutralized by the metals electron sea, can condense and form a BEC. When deuterium is in a BEC state there is probability that the deuteriums will interact via strong interactions. Dr. Kim has suggest two things of interest. First, that condensation could happen in a hydrated metal and the rules that describe the quantum overlap are modified my the metals electronic environment. In YE Kim's theory, it only takes 10-100 Deuterium ions to make a BEC within a metal. And the number of ions in the BEC glob is temperature relative.

I think Kim's theory is pretty convincing with deuterium in metals, What has been difficult for me is explaining the Hydrogen in metal systems. The problem being that H-ion is a fermion quantum 1/2 spin state, and is forced to follow the Pauli exclusion principle and so will never have an overlapping waveforms or the potential for strong interactions between protons.

Perhaps a pair of H ions waveforms interacting with W/Z's might flip enough to the Proton-Proton chain. As it is now, I really struggle to understand how H in a metal creates excess heat.

Best Regards,
Chuck

--------

s
On Fri, Feb 8, 2013 at 9:02 PM, Kevin O'Malley <kevmol...@gmail.com> wrote:
Hello Vorts:
See below for confirmation from YE Kim that the formation of a BEC at room temperature gives his LENR theory a leg up.






Kevin O'Malley <kevmol...@gmail.com>
1:22 PM (4 hours ago)



to yekim, ayandas, pkb

Hello Dr. Kim. I left you a voicemail regarding this. Does the formation of a BEC at room temperature make your theory of Deuteron Fusion more viable? Wasn't the main criticism of your theory that BECs couldn't form at higher temperatures? Y. E. Kim, "Bose-Einstein Condensate Theory of Deuteron Fusion in Metal", J. Condensed Matter Nucl. Sci. 4, 188 (2011),
best regards,
Kevin O'Malley

--------------------------------------------------------------------------------------

http://www.pnas.org/content/early/2013/01/29/1210842110

Polariton Bose–Einstein condensate at room temperature in an Al(Ga)N nanowire–dielectric microcavity with a spatial potential trap

Ayan Dasa,1,
Pallab Bhattacharyaa,1,
Junseok Heoa,
Animesh Banerjeea, and
Wei Guob

Author Affiliations

Edited by Paul L. McEuen, Cornell University, Ithaca, NY, and approved December 21, 2012 (received for review June 28, 2012)

Abstract

A spatial potential trap is formed in a 6.0-μm Al(Ga)N nanowire by varying the Al composition along its length during epitaxial growth. The polariton emission characteristics of a dielectric microcavity with the single nanowire embedded in-plane have been studied at room temperature. Excitation is provided at the Al(Ga)N end of the nanowire, and polariton emission is observed from the lowest bandgap GaN region within the potential trap. Comparison of the results with those measured in an identical microcavity with a uniform GaN nanowire and having an identical exciton–photon detuning suggests evaporative cooling of the polaritons as they are transported into the trap in the Al(Ga)N nanowire. Measurement of the spectral characteristics of the polariton emission, their momentum distribution, first-order spatial coherence, and time- resolved measurements of polariton cooling provides strong evidence of the formation of a near-equilibrium Bose–Einstein condensate in the GaN region of the nanowire at room temperature. In contrast, the condensate formed in the uniform GaN nanowire– dielectric microcavity without the spatial potential trap is only in self-equilibrium.

Bose–Einstein condensation
exciton–polariton
Footnotes
1To whom correspondence may be addressed.
E-mail: ayan...@umich.edu or p...@umich.edu.



Author contributions: A.D. and P.B. designed research; A.D. and J.H. performed research; J.H., A.B., and W.G. contributed new reagents/analytic tools; A.D. analyzed data; and P.B. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

This article contains supporting information online at
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1210842110/-/DCSupplemental .

Freely available online through the PNAS open access option.
 Reply
 Reply to all
 Forward

Kim, Yeong E
5:24 PM (32 minutes ago)



to me, ayandas, pkb

Hi, Kevin,

Yes, the formation of a BEC of deuterons (or other Bose nuclei) makes my theory more viable.


The claim, made by some that BECs could not form at room temperatures, was based on an inconclusive conjecture

which assumes that the Maxwell-Boltzmann (MB ) velocity distribution applies for deuterons in a metal.

This conjecture was not based on any theories nor on any experimentally observed facts.

The MB velocity distribution is for an ideal gas containing non- interacting particles.

There are no justifications to assume the MB velocity distribution for deuterons in a metal.

The published paper by Dasa, et al. quoted below indicates that the conjecture is not justified.


I have stated at seminars and conferences (in the proceedings) that


“The BEC formation of deuterons in metal at room temperatures depends on the velocity distribution

of deuterons in metal at room temperatures. The velocity distribution of deuterons in metal has not

determined by theories nor by experiments and is not expected to be the MB distribution”


The published paper by Dasa, et al. supports the above statement.

Yeong


keSent: Friday, February 08, 2013 4:22 PM
To: Kim, Yeong E
Cc: ayan...@umich.edu; p...@umich.edu
Subject: Bose Einstein Condensate formed at Room Temperature








Reply via email to