On Wednesday 24 December 2008 00:31:50 Bill Hart wrote:
> On sage.math:
>
> cd tune
> make tune
>
> ./.libs/libspeed.a(gcd_bin.o): In function `__gmpn_ngcd_matrix_init':
> gcd_bin.c:(.text+0x0): multiple definition of `__gmpn_ngcd_matrix_init'
> gcd.o:gcd.c:(.text+0x0): first defined here
> ./.libs/libspeed.a(gcd_bin.o): In function `__gmpn_nhgcd_itch':
> gcd_bin.c:(.text+0x80): multiple definition of `__gmpn_nhgcd_itch'
> gcd.o:gcd.c:(.text+0x80): first defined here
> ./.libs/libspeed.a(gcd_bin.o): In function `__gmpn_nhgcd':
> gcd_bin.c:(.text+0xc4): multiple definition of `__gmpn_nhgcd'
> gcd.o:gcd.c:(.text+0xc4): first defined here
> ./.libs/libspeed.a(gcd_bin.o): In function `mpn_basic_gcd':
> gcd_bin.c:(.text+0x2ed): multiple definition of `mpn_basic_gcd'
> gcd.o:gcd.c:(.text+0x2ed): first defined here

On my K8-linux same problem with make speed and tune

./configure && make && make check passes OK , and I got bored running ./try 
mpn_gcd :)

get this warning from the build though

ngcd.c: In function 'mpn_ngcd':
ngcd.c:75: warning: implicit declaration of function 'mpn_basic_gcd'

 
gcc -std=gnu99 -DHAVE_CONFIG_H -I. -I.. -D__GMP_WITHIN_GMP -I.. -O2 -m64 
-march=k8 -mtune=k8 -c 
gcd.c  -fPIC -DPIC -o .libs/gcd.o
gcd.c: In function 'mpz_rgcd':
gcd.c:167: warning: implicit declaration of function 'mpn_rgcd'
gcd.c: In function 'mpz_bgcd':
gcd.c:171: warning: implicit declaration of function 'mpn_bgcd'
gcd.c: In function 'mpz_sgcd':
gcd.c:175: warning: implicit declaration of function 'mpn_sgcd'
gcd.c: In function 'mpz_ngcd':
gcd.c:179: warning: implicit declaration of function 'mpn_ngcd'
 

./configure  --enable-alloca=debug --enable-assert && make && make check  
passes OK

but

./configure  --enable-alloca=debug --enable-assert --enable-nails=2 && make && 
make check  

PASS: t-mul_i
PASS: t-tdiv
PASS: t-tdiv_ui
PASS: t-fdiv
PASS: t-fdiv_ui
PASS: t-cdiv_ui
nhgcd2.c:206: GNU MP assertion failed: h0 == h1
/bin/sh: line 4: 31599 Aborted                 ${dir}$tst
FAIL: t-gcd
PASS: t-gcd_ui
nhgcd2.c:206: GNU MP assertion failed: h0 == h1
/bin/sh: line 4: 31647 Aborted                 ${dir}$tst
FAIL: t-lcm
PASS: dive
PASS: dive_ui
PASS: t-sqrtrem
PASS: convert
PASS: io


>
> Bill.
>
> 2008/12/23 Jason Martin <jason.worth.mar...@gmail.com>:
> > Attached are some edited versions of
> >
> > mpn/generic/gcd.c
> >
> > and
> >
> > mpn/generic/ngcd.c
> >
> > Drop them in, test them for correctness and speed.  Let me know what
> > breaks.  When everyone is happy, I'll check them in to svn
> >
> > --jason
> >
> > Jason Worth Martin
> > Asst. Professor of Mathematics
> > http://www.math.jmu.edu/~martin
> >
> >
> >
> > /* Schönhage's 1987 algorithm, reorganized into hgcd form */
> >
> > #include <stdio.h>  /* for NULL */
> >
> > #include "gmp.h"
> > #include "gmp-impl.h"
> > #include "longlong.h"
> >
> >
> > /* ******************************************************************
> >  *    Here we are including the original GMP version of mpn_gcd
> >  *    but we rename it as mpn_basic_gcd.  It needs to be available
> >  *    for the ngcd algorithm to call in the base case.
> >  *
> >  *  Preconditions [U = (up, usize) and V = (vp, vsize)]:
> >  *
> >  *   1.  V is odd.
> >  *   2.  numbits(U) >= numbits(V).
> >  *
> >  *   Both U and V are destroyed by the operation.  The result is left at
> > vp, *   and its size is returned.
> >  *
> >  *   Ken Weber (kwe...@mat.ufrgs.br, kwe...@mcs.kent.edu)
> >  *
> >  *   Funding for this work has been partially provided by Conselho
> >  *   Nacional de Desenvolvimento Cienti'fico e Tecnolo'gico (CNPq) do
> >  *   Brazil, Grant 301314194-2, and was done while I was a visiting
> >  *   reseacher in the Instituto de Matema'tica at Universidade Federal
> >  *   do Rio Grande do Sul (UFRGS).
> >  *
> >  *   Refer to K. Weber, The accelerated integer GCD algorithm, ACM
> >  *      Transactions on Mathematical Software, v. 21 (March), 1995,
> >  *      pp. 111-122.
> >  *
> >  * *****************************************************************/
> >
> >
> >
> > /* If MIN (usize, vsize) >= GCD_ACCEL_THRESHOLD, then the accelerated
> >   algorithm is used, otherwise the binary algorithm is used.  This may be
> >   adjusted for different architectures.  */
> > #ifndef GCD_ACCEL_THRESHOLD
> > #define GCD_ACCEL_THRESHOLD 5
> > #endif
> >
> > /* When U and V differ in size by more than BMOD_THRESHOLD, the
> > accelerated algorithm reduces using the bmod operation.  Otherwise, the
> > k-ary reduction is used.  0 <= BMOD_THRESHOLD < GMP_NUMB_BITS.  */
> > enum
> >  {
> >    BMOD_THRESHOLD = GMP_NUMB_BITS/2
> >  };
> >
> >
> > /* Use binary algorithm to compute V <-- GCD (V, U) for usize, vsize ==
> > 2. Both U and V must be odd.  */
> > static inline mp_size_t
> > gcd_2 (mp_ptr vp, mp_srcptr up)
> > {
> >  mp_limb_t u0, u1, v0, v1;
> >  mp_size_t vsize;
> >
> >  u0 = up[0];
> >  u1 = up[1];
> >  v0 = vp[0];
> >  v1 = vp[1];
> >
> >  while (u1 != v1 && u0 != v0)
> >    {
> >      unsigned long int r;
> >      if (u1 > v1)
> >        {
> >          u1 -= v1 + (u0 < v0);
> >          u0 = (u0 - v0) & GMP_NUMB_MASK;
> >          count_trailing_zeros (r, u0);
> >          u0 = ((u1 << (GMP_NUMB_BITS - r)) & GMP_NUMB_MASK) | (u0 >> r);
> >          u1 >>= r;
> >        }
> >      else  /* u1 < v1.  */
> >        {
> >          v1 -= u1 + (v0 < u0);
> >          v0 = (v0 - u0) & GMP_NUMB_MASK;
> >          count_trailing_zeros (r, v0);
> >          v0 = ((v1 << (GMP_NUMB_BITS - r)) & GMP_NUMB_MASK) | (v0 >> r);
> >          v1 >>= r;
> >        }
> >    }
> >
> >  vp[0] = v0, vp[1] = v1, vsize = 1 + (v1 != 0);
> >
> >  /* If U == V == GCD, done.  Otherwise, compute GCD (V, |U - V|).  */
> >  if (u1 == v1 && u0 == v0)
> >    return vsize;
> >
> >  v0 = (u0 == v0) ? (u1 > v1) ? u1-v1 : v1-u1 : (u0 > v0) ? u0-v0 : v0-u0;
> >  vp[0] = mpn_gcd_1 (vp, vsize, v0);
> >
> >  return 1;
> > }
> >
> > /* The function find_a finds 0 < N < 2^GMP_NUMB_BITS such that there
> > exists 0 < |D| < 2^GMP_NUMB_BITS, and N == D * C mod 2^(2*GMP_NUMB_BITS).
> > In the reference article, D was computed along with N, but it is better
> > to compute D separately as D <-- N / C mod 2^(GMP_NUMB_BITS + 1),
> > treating the result as a twos' complement signed integer.
> >
> >   Initialize N1 to C mod 2^(2*GMP_NUMB_BITS).  According to the reference
> >   article, N2 should be initialized to 2^(2*GMP_NUMB_BITS), but we use
> >   2^(2*GMP_NUMB_BITS) - N1 to start the calculations within double
> >   precision.  If N2 > N1 initially, the first iteration of the while loop
> >   will swap them.  In all other situations, N1 >= N2 is maintained.  */
> >
> > #if HAVE_NATIVE_mpn_gcd_finda
> > #define find_a(cp)  mpn_gcd_finda (cp)
> >
> > #else
> > static
> > #if ! defined (__i386__)
> > inline                          /* don't inline this for the x86 */
> > #endif
> > mp_limb_t
> > find_a (mp_srcptr cp)
> > {
> >  unsigned long int leading_zero_bits = 0;
> >
> >  mp_limb_t n1_l = cp[0];       /* N1 == n1_h * 2^GMP_NUMB_BITS + n1_l. 
> > */ mp_limb_t n1_h = cp[1];
> >
> >  mp_limb_t n2_l = (-n1_l & GMP_NUMB_MASK);     /* N2 == n2_h *
> > 2^GMP_NUMB_BITS + n2_l.  */ mp_limb_t n2_h = (~n1_h & GMP_NUMB_MASK);
> >
> >  /* Main loop.  */
> >  while (n2_h != 0)             /* While N2 >= 2^GMP_NUMB_BITS.  */
> >    {
> >      /* N1 <-- N1 % N2.  */
> >      if (((GMP_NUMB_HIGHBIT >> leading_zero_bits) & n2_h) == 0)
> >        {
> >          unsigned long int i;
> >          count_leading_zeros (i, n2_h);
> >          i -= GMP_NAIL_BITS;
> >          i -= leading_zero_bits;
> >          leading_zero_bits += i;
> >          n2_h = ((n2_h << i) & GMP_NUMB_MASK) | (n2_l >> (GMP_NUMB_BITS -
> > i)); n2_l = (n2_l << i) & GMP_NUMB_MASK;
> >          do
> >            {
> >              if (n1_h > n2_h || (n1_h == n2_h && n1_l >= n2_l))
> >                {
> >                  n1_h -= n2_h + (n1_l < n2_l);
> >                  n1_l = (n1_l - n2_l) & GMP_NUMB_MASK;
> >                }
> >              n2_l = (n2_l >> 1) | ((n2_h << (GMP_NUMB_BITS - 1)) &
> > GMP_NUMB_MASK); n2_h >>= 1;
> >              i -= 1;
> >            }
> >          while (i != 0);
> >        }
> >      if (n1_h > n2_h || (n1_h == n2_h && n1_l >= n2_l))
> >        {
> >          n1_h -= n2_h + (n1_l < n2_l);
> >          n1_l = (n1_l - n2_l) & GMP_NUMB_MASK;
> >        }
> >
> >      MP_LIMB_T_SWAP (n1_h, n2_h);
> >      MP_LIMB_T_SWAP (n1_l, n2_l);
> >    }
> >
> >  return n2_l;
> > }
> > #endif
> >
> >
> > mp_size_t
> > mpn_basic_gcd (mp_ptr gp, mp_ptr up, mp_size_t usize, mp_ptr vp,
> > mp_size_t vsize) {
> >  mp_ptr orig_vp = vp;
> >  mp_size_t orig_vsize = vsize;
> >  int binary_gcd_ctr;           /* Number of times binary gcd will
> > execute.  */ mp_size_t scratch;
> >  mp_ptr tp;
> >  TMP_DECL;
> >
> >  ASSERT (usize >= 1);
> >  ASSERT (vsize >= 1);
> >  ASSERT (usize >= vsize);
> >  ASSERT (vp[0] & 1);
> >  ASSERT (up[usize - 1] != 0);
> >  ASSERT (vp[vsize - 1] != 0);
> > #if WANT_ASSERT
> >  if (usize == vsize)
> >    {
> >      int  uzeros, vzeros;
> >      count_leading_zeros (uzeros, up[usize - 1]);
> >      count_leading_zeros (vzeros, vp[vsize - 1]);
> >      ASSERT (uzeros <= vzeros);
> >    }
> > #endif
> >  ASSERT (! MPN_OVERLAP_P (up, usize, vp, vsize));
> >  ASSERT (MPN_SAME_OR_SEPARATE2_P (gp, vsize, up, usize));
> >  ASSERT (MPN_SAME_OR_SEPARATE2_P (gp, vsize, vp, vsize));
> >
> >  TMP_MARK;
> >
> >  /* Use accelerated algorithm if vsize is over GCD_ACCEL_THRESHOLD.
> >     Two EXTRA limbs for U and V are required for kary reduction.  */
> >  if (vsize >= GCD_ACCEL_THRESHOLD)
> >    {
> >      unsigned long int vbitsize, d;
> >      mp_ptr orig_up = up;
> >      mp_size_t orig_usize = usize;
> >      mp_ptr anchor_up = (mp_ptr) TMP_ALLOC ((usize + 2) *
> > BYTES_PER_MP_LIMB);
> >
> >      MPN_COPY (anchor_up, orig_up, usize);
> >      up = anchor_up;
> >
> >      count_leading_zeros (d, up[usize - 1]);
> >      d -= GMP_NAIL_BITS;
> >      d = usize * GMP_NUMB_BITS - d;
> >      count_leading_zeros (vbitsize, vp[vsize - 1]);
> >      vbitsize -= GMP_NAIL_BITS;
> >      vbitsize = vsize * GMP_NUMB_BITS - vbitsize;
> >      ASSERT (d >= vbitsize);
> >      d = d - vbitsize + 1;
> >
> >      /* Use bmod reduction to quickly discover whether V divides U.  */
> >      up[usize++] = 0;                          /* Insert leading zero. 
> > */ mpn_bdivmod (up, up, usize, vp, vsize, d);
> >
> >      /* Now skip U/V mod 2^d and any low zero limbs.  */
> >      d /= GMP_NUMB_BITS, up += d, usize -= d;
> >      while (usize != 0 && up[0] == 0)
> >        up++, usize--;
> >
> >      if (usize == 0)                           /* GCD == ORIG_V.  */
> >        goto done;
> >
> >      vp = (mp_ptr) TMP_ALLOC ((vsize + 2) * BYTES_PER_MP_LIMB);
> >      MPN_COPY (vp, orig_vp, vsize);
> >
> >      do                                        /* Main loop.  */
> >        {
> >          /* mpn_com_n can't be used here because anchor_up and up may
> >             partially overlap */
> >          if ((up[usize - 1] & GMP_NUMB_HIGHBIT) != 0)  /* U < 0; take
> > twos' compl. */ {
> >              mp_size_t i;
> >              anchor_up[0] = -up[0] & GMP_NUMB_MASK;
> >              for (i = 1; i < usize; i++)
> >                anchor_up[i] = (~up[i] & GMP_NUMB_MASK);
> >              up = anchor_up;
> >            }
> >
> >          MPN_NORMALIZE_NOT_ZERO (up, usize);
> >
> >          if ((up[0] & 1) == 0)                 /* Result even; remove
> > twos. */ {
> >              unsigned int r;
> >              count_trailing_zeros (r, up[0]);
> >              mpn_rshift (anchor_up, up, usize, r);
> >              usize -= (anchor_up[usize - 1] == 0);
> >            }
> >          else if (anchor_up != up)
> >            MPN_COPY_INCR (anchor_up, up, usize);
> >
> >          MPN_PTR_SWAP (anchor_up,usize, vp,vsize);
> >          up = anchor_up;
> >
> >          if (vsize <= 2)               /* Kary can't handle < 2 limbs and
> >  */ break;                      /* isn't efficient for == 2 limbs.  */
> >
> >          d = vbitsize;
> >          count_leading_zeros (vbitsize, vp[vsize - 1]);
> >          vbitsize -= GMP_NAIL_BITS;
> >          vbitsize = vsize * GMP_NUMB_BITS - vbitsize;
> >          d = d - vbitsize + 1;
> >
> >          if (d > BMOD_THRESHOLD)       /* Bmod reduction.  */
> >            {
> >              up[usize++] = 0;
> >              mpn_bdivmod (up, up, usize, vp, vsize, d);
> >              d /= GMP_NUMB_BITS, up += d, usize -= d;
> >            }
> >          else                          /* Kary reduction.  */
> >            {
> >              mp_limb_t bp[2], cp[2];
> >
> >              /* C <-- V/U mod 2^(2*GMP_NUMB_BITS).  */
> >              {
> >                mp_limb_t u_inv, hi, lo;
> >                modlimb_invert (u_inv, up[0]);
> >                cp[0] = (vp[0] * u_inv) & GMP_NUMB_MASK;
> >                umul_ppmm (hi, lo, cp[0], up[0] << GMP_NAIL_BITS);
> >                lo >>= GMP_NAIL_BITS;
> >                cp[1] = (vp[1] - hi - cp[0] * up[1]) * u_inv &
> > GMP_NUMB_MASK; }
> >
> >              /* U <-- find_a (C)  *  U.  */
> >              up[usize] = mpn_mul_1 (up, up, usize, find_a (cp));
> >              usize++;
> >
> >              /* B <-- A/C == U/V mod 2^(GMP_NUMB_BITS + 1).
> >                  bp[0] <-- U/V mod 2^GMP_NUMB_BITS and
> >                  bp[1] <-- ( (U - bp[0] * V)/2^GMP_NUMB_BITS ) / V mod 2
> >
> >                  Like V/U above, but simplified because only the low bit
> > of bp[1] is wanted. */
> >              {
> >                mp_limb_t  v_inv, hi, lo;
> >                modlimb_invert (v_inv, vp[0]);
> >                bp[0] = (up[0] * v_inv) & GMP_NUMB_MASK;
> >                umul_ppmm (hi, lo, bp[0], vp[0] << GMP_NAIL_BITS);
> >                lo >>= GMP_NAIL_BITS;
> >                bp[1] = (up[1] + hi + (bp[0] & vp[1])) & 1;
> >              }
> >
> >              up[usize++] = 0;
> >              if (bp[1] != 0)   /* B < 0: U <-- U + (-B)  * V.  */
> >                {
> >                   mp_limb_t c = mpn_addmul_1 (up, vp, vsize, -bp[0] &
> > GMP_NUMB_MASK); mpn_add_1 (up + vsize, up + vsize, usize - vsize, c); }
> >              else              /* B >= 0:  U <-- U - B * V.  */
> >                {
> >                  mp_limb_t b = mpn_submul_1 (up, vp, vsize, bp[0]);
> >                  mpn_sub_1 (up + vsize, up + vsize, usize - vsize, b);
> >                }
> >
> >              up += 2, usize -= 2;  /* At least two low limbs are zero. 
> > */ }
> >
> >          /* Must remove low zero limbs before complementing.  */
> >          while (usize != 0 && up[0] == 0)
> >            up++, usize--;
> >        }
> >      while (usize != 0);
> >
> >      /* Compute GCD (ORIG_V, GCD (ORIG_U, V)).  Binary will execute
> > twice.  */ up = orig_up, usize = orig_usize;
> >      binary_gcd_ctr = 2;
> >    }
> >  else
> >    binary_gcd_ctr = 1;
> >
> >  scratch = MPN_NGCD_LEHMER_ITCH (vsize);
> >  if (usize + 1 > scratch)
> >    scratch = usize + 1;
> >
> >  tp = TMP_ALLOC_LIMBS (scratch);
> >
> >  /* Finish up with the binary algorithm.  Executes once or twice.  */
> >  for ( ; binary_gcd_ctr--; up = orig_vp, usize = orig_vsize)
> >    {
> > #if 1
> >      if (usize > vsize)
> >        {
> >          /* FIXME: Could use mpn_bdivmod. */
> >          mp_size_t rsize;
> >
> >          mpn_tdiv_qr (tp + vsize, tp, 0, up, usize, vp, vsize);
> >          rsize = vsize;
> >          MPN_NORMALIZE (tp, rsize);
> >          if (rsize == 0)
> >            continue;
> >
> >          MPN_COPY (up, tp, vsize);
> >        }
> >      vsize = mpn_ngcd_lehmer (vp, up, vp, vsize, tp);
> > #else
> >      if (usize > 2)            /* First make U close to V in size.  */
> >        {
> >          unsigned long int vbitsize, d;
> >          count_leading_zeros (d, up[usize - 1]);
> >          d -= GMP_NAIL_BITS;
> >          d = usize * GMP_NUMB_BITS - d;
> >          count_leading_zeros (vbitsize, vp[vsize - 1]);
> >          vbitsize -= GMP_NAIL_BITS;
> >          vbitsize = vsize * GMP_NUMB_BITS - vbitsize;
> >          d = d - vbitsize - 1;
> >          if (d != -(unsigned long int)1 && d > 2)
> >            {
> >              mpn_bdivmod (up, up, usize, vp, vsize, d);  /* Result > 0. 
> > */ d /= (unsigned long int)GMP_NUMB_BITS, up += d, usize -= d; }
> >        }
> >
> >      /* Start binary GCD.  */
> >      do
> >        {
> >          mp_size_t zeros;
> >
> >          /* Make sure U is odd.  */
> >          MPN_NORMALIZE (up, usize);
> >          while (up[0] == 0)
> >            up += 1, usize -= 1;
> >          if ((up[0] & 1) == 0)
> >            {
> >              unsigned int r;
> >              count_trailing_zeros (r, up[0]);
> >              mpn_rshift (up, up, usize, r);
> >              usize -= (up[usize - 1] == 0);
> >            }
> >
> >          /* Keep usize >= vsize.  */
> >          if (usize < vsize)
> >            MPN_PTR_SWAP (up, usize, vp, vsize);
> >
> >          if (usize <= 2)                               /* Double
> > precision. */ {
> >              if (vsize == 1)
> >                vp[0] = mpn_gcd_1 (up, usize, vp[0]);
> >              else
> >                vsize = gcd_2 (vp, up);
> >              break;                                    /* Binary GCD
> > done.  */ }
> >
> >          /* Count number of low zero limbs of U - V.  */
> >          for (zeros = 0; up[zeros] == vp[zeros] && ++zeros != vsize; )
> >            continue;
> >
> >          /* If U < V, swap U and V; in any case, subtract V from U.  */
> >          if (zeros == vsize)                           /* Subtract done. 
> > */ up += zeros, usize -= zeros;
> >          else if (usize == vsize)
> >            {
> >              mp_size_t size = vsize;
> >              do
> >                size--;
> >              while (up[size] == vp[size]);
> >              if (up[size] < vp[size])                  /* usize == vsize.
> >  */ MP_PTR_SWAP (up, vp);
> >              up += zeros, usize = size + 1 - zeros;
> >              mpn_sub_n (up, up, vp + zeros, usize);
> >            }
> >          else
> >            {
> >              mp_size_t size = vsize - zeros;
> >              up += zeros, usize -= zeros;
> >              if (mpn_sub_n (up, up, vp + zeros, size))
> >                {
> >                  while (up[size] == 0)                 /* Propagate
> > borrow. */ up[size++] = -(mp_limb_t)1;
> >                  up[size] -= 1;
> >                }
> >            }
> >        }
> >      while (usize);                                    /* End binary GCD.
> >  */ #endif
> >    }
> >
> > done:
> >  if (vp != gp)
> >    MPN_COPY_INCR (gp, vp, vsize);
> >  TMP_FREE;
> >  return vsize;
> > }
> >
> >
> >
> > /* ******************************************************************
> >  *     END of original GMP mpn_gcd
> >  * *****************************************************************/
> >
> >
> >
> >
> >
> > /* For input of size n, matrix elements are of size at most ceil(n/2)
> >   - 1, but we need one limb extra. */
> >
> > void
> > mpn_ngcd_matrix_init (struct ngcd_matrix *M, mp_size_t n, mp_ptr p)
> > {
> >  mp_size_t s = (n+1)/2;
> >  M->alloc = s;
> >  M->n = 1;
> >  MPN_ZERO (p, 4 * s);
> >  M->p[0][0] = p;
> >  M->p[0][1] = p + s;
> >  M->p[1][0] = p + 2 * s;
> >  M->p[1][1] = p + 3 * s;
> >  M->tp = p + 4*s;
> >
> >  M->p[0][0][0] = M->p[1][1][0] = 1;
> > }
> >
> > #define NHGCD_BASE_ITCH MPN_NGCD_STEP_ITCH
> >
> > /* Reduces a,b until |a-b| fits in n/2 + 1 limbs. Constructs matrix M
> >   with elements of size at most (n+1)/2 - 1. Returns new size of a,
> >   b, or zero if no reduction is possible. */
> > static mp_size_t
> > nhgcd_base (mp_ptr ap, mp_ptr bp, mp_size_t n,
> >            struct ngcd_matrix *M, mp_ptr tp)
> > {
> >  mp_size_t s = n/2 + 1;
> >  mp_size_t nn;
> >
> >  ASSERT (n > s);
> >  ASSERT (ap[n-1] > 0 || bp[n-1] > 0);
> >
> >  nn = mpn_ngcd_step (n, ap, bp, s, M, tp);
> >  if (!nn)
> >    return 0;
> >
> >  for (;;)
> >    {
> >      n = nn;
> >      ASSERT (n > s);
> >      nn = mpn_ngcd_step (n, ap, bp, s, M, tp);
> >      if (!nn )
> >        return n;
> >    }
> > }
> >
> > /* Size analysis for nhgcd:
> >
> >   For the recursive calls, we have n1 <= ceil(n / 2). Then the
> >   storage need is determined by the storage for the recursive call
> >   computing M1, and ngcd_matrix_adjust and ngcd_matrix_mul calls that use
> > M1 (after this, the storage needed for M1 can be recycled).
> >
> >   Let S(r) denote the required storage. For M1 we need 5 * ceil(n1/2)
> >   = 5 * ceil(n/4), and for the ngcd_matrix_adjust call, we need n + 2. In
> >   total, 5 * ceil(n/4) + n + 2 <= 9 ceil(n/4) + 2.
> >
> >   For the recursive call, we need S(n1) = S(ceil(n/2)).
> >
> >   S(n) <= 9*ceil(n/4) + 2 + S(ceil(n/2))
> >        <= 9*(ceil(n/4) + ... + ceil(n/2^(1+k))) + 2k + S(ceil(n/2^k))
> >        <= 9*(2 ceil(n/4) + k) + 2k + S(n/2^k)
> >        <= 18 ceil(n/4) + 11k + S(n/2^k)
> >
> > */
> >
> > mp_size_t
> > mpn_nhgcd_itch (mp_size_t n)
> > {
> >  unsigned k;
> >  mp_size_t nn;
> >
> >  /* Inefficient way to almost compute
> >     log_2(n/NHGCD_BASE_THRESHOLD) */
> >  for (k = 0, nn = n;
> >       ABOVE_THRESHOLD (nn, NHGCD_THRESHOLD);
> >       nn = (nn + 1) / 2)
> >    k++;
> >
> >  if (k == 0)
> >    return NHGCD_BASE_ITCH (n);
> >
> >  return 18 * ((n+3) / 4) + 11 * k
> >    + NHGCD_BASE_ITCH (NHGCD_THRESHOLD);
> > }
> >
> > /* Reduces a,b until |a-b| fits in n/2 + 1 limbs. Constructs matrix M
> >   with elements of size at most (n+1)/2 - 1. Returns new size of a,
> >   b, or zero if no reduction is possible. */
> >
> > mp_size_t
> > mpn_nhgcd (mp_ptr ap, mp_ptr bp, mp_size_t n,
> >           struct ngcd_matrix *M, mp_ptr tp)
> > {
> >  mp_size_t s = n/2 + 1;
> >  mp_size_t n2 = (3*n)/4 + 1;
> >
> >  mp_size_t p, nn;
> >  unsigned count;
> >  int success = 0;
> >
> >  ASSERT (n > s);
> >  ASSERT ((ap[n-1] | bp[n-1]) > 0);
> >
> >  ASSERT ((n+1)/2 - 1 < M->alloc);
> >
> >  if (BELOW_THRESHOLD (n, NHGCD_THRESHOLD))
> >    return nhgcd_base (ap, bp, n, M, tp);
> >
> >  p = n/2;
> >  nn = mpn_nhgcd (ap + p, bp + p, n - p, M, tp);
> >  if (nn > 0)
> >    {
> >      /* Needs 2*(p + M->n) <= 2*(floor(n/2) + ceil(n/2) - 1)
> >         = 2 (n - 1) */
> >      n = mpn_ngcd_matrix_adjust (M, p + nn, ap, bp, p, tp);
> >      success = 1;
> >    }
> >  count = 0;
> >  while (n > n2)
> >    {
> >      count++;
> >      /* Needs n + 1 storage */
> >      nn = mpn_ngcd_step (n, ap, bp, s, M, tp);
> >      if (!nn)
> >        return success ? n : 0;
> >      n = nn;
> >      success = 1;
> >    }
> >
> >  if (n > s + 2)
> >    {
> >      struct ngcd_matrix M1;
> >      mp_size_t scratch;
> >
> >      p = 2*s - n + 1;
> >      scratch = MPN_NGCD_MATRIX_INIT_ITCH (n-p);
> >
> >      mpn_ngcd_matrix_init(&M1, n - p, tp);
> >      nn = mpn_nhgcd (ap + p, bp + p, n - p, &M1, tp + scratch);
> >      if (nn > 0)
> >        {
> >          /* Needs 2 (p + M->n) <= 2 (2*s - n2 + 1 + n2 - s - 1)
> >             = 2*s <= 2*(floor(n/2) + 1) <= n + 2. */
> >          n = mpn_ngcd_matrix_adjust (&M1, p + nn, ap, bp, p, tp +
> > scratch); /* Needs M->n <= n2 - s - 1 < n/4 */
> >          mpn_ngcd_matrix_mul (M, &M1, tp + scratch);
> >          success = 1;
> >        }
> >    }
> >
> >  /* FIXME: This really is the base case */
> >  for (count = 0;; count++)
> >    {
> >      /* Needs s+3 < n */
> >      nn = mpn_ngcd_step (n, ap, bp, s, M, tp);
> >      if (!nn)
> >        return success ? n : 0;
> >
> >      n = nn;
> >      success = 1;
> >    }
> > }
> >
> > #define EVEN_P(x) (((x) & 1) == 0)
> >
> > mp_size_t
> > mpn_gcd (mp_ptr gp, mp_ptr ap, mp_size_t an, mp_ptr bp, mp_size_t n)
> > {
> >  mp_size_t init_scratch;
> >  mp_size_t scratch;
> >  mp_ptr tp;
> >  TMP_DECL;
> >
> >  ASSERT (an >= n);
> >
> >  if (BELOW_THRESHOLD (n, NGCD_THRESHOLD))
> >    return mpn_basic_gcd (gp, ap, an, bp, n);
> >
> >  init_scratch = MPN_NGCD_MATRIX_INIT_ITCH ((n+1)/2);
> >  scratch = mpn_nhgcd_itch ((n+1)/2);
> >
> >  /* Space needed for mpn_ngcd_matrix_adjust */
> >  if (scratch < 2*n)
> >    scratch = 2*n;
> >
> >  TMP_MARK;
> >
> >  if (an + 1 > init_scratch + scratch)
> >    tp = TMP_ALLOC_LIMBS (an + 1);
> >  else
> >    tp = TMP_ALLOC_LIMBS (init_scratch + scratch);
> >
> >  if (an > n)
> >    {
> >      mp_ptr rp = tp;
> >      mp_ptr qp = rp + n;
> >
> >      mpn_tdiv_qr (qp, rp, 0, ap, an, bp, n);
> >      MPN_COPY (ap, rp, n);
> >      an = n;
> >      MPN_NORMALIZE (ap, an);
> >      if (an == 0)
> >        {
> >          MPN_COPY (gp, bp, n);
> >          TMP_FREE;
> >          return n;
> >        }
> >    }
> >
> >  while (ABOVE_THRESHOLD (n, NGCD_THRESHOLD))
> >    {
> >      struct ngcd_matrix M;
> >      mp_size_t p = n/2;
> >      mp_size_t nn;
> >
> >      mpn_ngcd_matrix_init (&M, n - p, tp);
> >      nn = mpn_nhgcd (ap + p, bp + p, n - p, &M, tp + init_scratch);
> >      if (nn > 0)
> >        /* Needs 2*(p + M->n) <= 2*(floor(n/2) + ceil(n/2) - 1)
> >           = 2(n-1) */
> >        n = mpn_ngcd_matrix_adjust (&M, p + nn, ap, bp, p, tp +
> > init_scratch);
> >
> >      else
> >        {
> >          mp_size_t gn;
> >          n = mpn_ngcd_subdiv_step (gp, &gn, ap, bp, n, tp);
> >          if (n == 0)
> >            {
> >              TMP_FREE;
> >              return gn;
> >            }
> >        }
> >    }
> >
> >  ASSERT (ap[n-1] > 0 || bp[n-1] > 0);
> > #if 0
> >  /* FIXME: We may want to use lehmer on some systems. */
> >  n = mpn_ngcd_lehmer (gp, ap, bp, n, tp);
> >
> >  TMP_FREE;
> >  return n;
> > #endif
> >
> >  if (ap[n-1] < bp[n-1])
> >    MP_PTR_SWAP (ap, bp);
> >
> >  an = n;
> >  MPN_NORMALIZE (bp, n);
> >
> >  if (n == 0)
> >    {
> >      MPN_COPY (gp, ap, an);
> >      TMP_FREE;
> >      return an;
> >    }
> >
> >  if (EVEN_P (bp[0]))
> >    {
> >      /* Then a must be odd (since the calling convention implies that
> >         there's no common factor of 2) */
> >      ASSERT (!EVEN_P (ap[0]));
> >
> >      while (bp[0] == 0)
> >        {
> >          bp++;
> >          n--;
> >        }
> >
> >      if (EVEN_P(bp[0]))
> >        {
> >          int count;
> >          count_trailing_zeros (count, bp[0]);
> >          ASSERT_NOCARRY (mpn_rshift (bp, bp, n, count));
> >          n -= (bp[n-1] == 0);
> >        }
> >    }
> >
> >  TMP_FREE;
> >  return mpn_basic_gcd (gp, ap, an, bp, n);
> > }
> >
> > /* Schönhage's 1987 algorithm, reorganized into hgcd form */
> >
> > #include <stdio.h>  /* for NULL */
> >
> > #include "gmp.h"
> > #include "gmp-impl.h"
> > #include "longlong.h"
> >
> >
> >
> >
> >
> >
> > /* For input of size n, matrix elements are of size at most ceil(n/2)
> >   - 1, but we need one limb extra. */
> >
> > void
> > mpn_ngcd_matrix_init (struct ngcd_matrix *M, mp_size_t n, mp_ptr p);
> >
> > #define NHGCD_BASE_ITCH MPN_NGCD_STEP_ITCH
> >
> > /* Reduces a,b until |a-b| fits in n/2 + 1 limbs. Constructs matrix M
> >   with elements of size at most (n+1)/2 - 1. Returns new size of a,
> >   b, or zero if no reduction is possible. */
> > static mp_size_t
> > nhgcd_base (mp_ptr ap, mp_ptr bp, mp_size_t n,
> >            struct ngcd_matrix *M, mp_ptr tp);
> >
> > /* Size analysis for nhgcd:
> >
> >   For the recursive calls, we have n1 <= ceil(n / 2). Then the
> >   storage need is determined by the storage for the recursive call
> >   computing M1, and ngcd_matrix_adjust and ngcd_matrix_mul calls that use
> > M1 (after this, the storage needed for M1 can be recycled).
> >
> >   Let S(r) denote the required storage. For M1 we need 5 * ceil(n1/2)
> >   = 5 * ceil(n/4), and for the ngcd_matrix_adjust call, we need n + 2. In
> >   total, 5 * ceil(n/4) + n + 2 <= 9 ceil(n/4) + 2.
> >
> >   For the recursive call, we need S(n1) = S(ceil(n/2)).
> >
> >   S(n) <= 9*ceil(n/4) + 2 + S(ceil(n/2))
> >        <= 9*(ceil(n/4) + ... + ceil(n/2^(1+k))) + 2k + S(ceil(n/2^k))
> >        <= 9*(2 ceil(n/4) + k) + 2k + S(n/2^k)
> >        <= 18 ceil(n/4) + 11k + S(n/2^k)
> >
> > */
> >
> > mp_size_t
> > mpn_nhgcd_itch (mp_size_t n);
> >
> >
> > /* Reduces a,b until |a-b| fits in n/2 + 1 limbs. Constructs matrix M
> >   with elements of size at most (n+1)/2 - 1. Returns new size of a,
> >   b, or zero if no reduction is possible. */
> >
> > mp_size_t
> > mpn_nhgcd (mp_ptr ap, mp_ptr bp, mp_size_t n,
> >           struct ngcd_matrix *M, mp_ptr tp);
> >
> >
> > #define EVEN_P(x) (((x) & 1) == 0)
> >
> > mp_size_t
> > mpn_ngcd (mp_ptr gp, mp_ptr ap, mp_size_t an, mp_ptr bp, mp_size_t n)
> > {
> >  mp_size_t init_scratch;
> >  mp_size_t scratch;
> >  mp_ptr tp;
> >  TMP_DECL;
> >
> >  ASSERT (an >= n);
> >
> >  if (BELOW_THRESHOLD (n, NGCD_THRESHOLD))
> >    return mpn_basic_gcd (gp, ap, an, bp, n);
> >
> >  init_scratch = MPN_NGCD_MATRIX_INIT_ITCH ((n+1)/2);
> >  scratch = mpn_nhgcd_itch ((n+1)/2);
> >
> >  /* Space needed for mpn_ngcd_matrix_adjust */
> >  if (scratch < 2*n)
> >    scratch = 2*n;
> >
> >  TMP_MARK;
> >
> >  if (an + 1 > init_scratch + scratch)
> >    tp = TMP_ALLOC_LIMBS (an + 1);
> >  else
> >    tp = TMP_ALLOC_LIMBS (init_scratch + scratch);
> >
> >  if (an > n)
> >    {
> >      mp_ptr rp = tp;
> >      mp_ptr qp = rp + n;
> >
> >      mpn_tdiv_qr (qp, rp, 0, ap, an, bp, n);
> >      MPN_COPY (ap, rp, n);
> >      an = n;
> >      MPN_NORMALIZE (ap, an);
> >      if (an == 0)
> >        {
> >          MPN_COPY (gp, bp, n);
> >          TMP_FREE;
> >          return n;
> >        }
> >    }
> >
> >  while (ABOVE_THRESHOLD (n, NGCD_THRESHOLD))
> >    {
> >      struct ngcd_matrix M;
> >      mp_size_t p = n/2;
> >      mp_size_t nn;
> >
> >      mpn_ngcd_matrix_init (&M, n - p, tp);
> >      nn = mpn_nhgcd (ap + p, bp + p, n - p, &M, tp + init_scratch);
> >      if (nn > 0)
> >        /* Needs 2*(p + M->n) <= 2*(floor(n/2) + ceil(n/2) - 1)
> >           = 2(n-1) */
> >        n = mpn_ngcd_matrix_adjust (&M, p + nn, ap, bp, p, tp +
> > init_scratch);
> >
> >      else
> >        {
> >          mp_size_t gn;
> >          n = mpn_ngcd_subdiv_step (gp, &gn, ap, bp, n, tp);
> >          if (n == 0)
> >            {
> >              TMP_FREE;
> >              return gn;
> >            }
> >        }
> >    }
> >
> >  ASSERT (ap[n-1] > 0 || bp[n-1] > 0);
> > #if 0
> >  /* FIXME: We may want to use lehmer on some systems. */
> >  n = mpn_ngcd_lehmer (gp, ap, bp, n, tp);
> >
> >  TMP_FREE;
> >  return n;
> > #endif
> >
> >  if (ap[n-1] < bp[n-1])
> >    MP_PTR_SWAP (ap, bp);
> >
> >  an = n;
> >  MPN_NORMALIZE (bp, n);
> >
> >  if (n == 0)
> >    {
> >      MPN_COPY (gp, ap, an);
> >      TMP_FREE;
> >      return an;
> >    }
> >
> >  if (EVEN_P (bp[0]))
> >    {
> >      /* Then a must be odd (since the calling convention implies that
> >         there's no common factor of 2) */
> >      ASSERT (!EVEN_P (ap[0]));
> >
> >      while (bp[0] == 0)
> >        {
> >          bp++;
> >          n--;
> >        }
> >
> >      if (EVEN_P(bp[0]))
> >        {
> >          int count;
> >          count_trailing_zeros (count, bp[0]);
> >          ASSERT_NOCARRY (mpn_rshift (bp, bp, n, count));
> >          n -= (bp[n-1] == 0);
> >        }
> >    }
> >
> >  TMP_FREE;
> >  return mpn_basic_gcd (gp, ap, an, bp, n);
> > }
>
> 


--~--~---------~--~----~------------~-------~--~----~
You received this message because you are subscribed to the Google Groups 
"mpir-devel" group.
To post to this group, send email to mpir-devel@googlegroups.com
To unsubscribe from this group, send email to 
mpir-devel+unsubscr...@googlegroups.com
For more options, visit this group at 
http://groups.google.com/group/mpir-devel?hl=en
-~----------~----~----~----~------~----~------~--~---

Reply via email to