Great! Torbjorn's patch is clearly licensed v3+, so we cannot use it
as eMPIRe is LGPL v2+.

Bill.

2008/12/24  <ja...@njkfrudils.plus.com>:
>
> On Wednesday 24 December 2008 00:44:22 Bill Hart wrote:
>> Times seem great for GCD. Just some build issues to fix and we're done!
>>
>> Oh and I need to fix the perfect power bug.
>>
>
> I've got a fix , but I would like to check it some more tomorrow.
>
> Jason
>
>
>
>> Bill.
>>
>> 2008/12/24 Bill Hart <goodwillh...@googlemail.com>:
>> > On sage.math:
>> >
>> > cd tune
>> > make tune
>> >
>> > ./.libs/libspeed.a(gcd_bin.o): In function `__gmpn_ngcd_matrix_init':
>> > gcd_bin.c:(.text+0x0): multiple definition of `__gmpn_ngcd_matrix_init'
>> > gcd.o:gcd.c:(.text+0x0): first defined here
>> > ./.libs/libspeed.a(gcd_bin.o): In function `__gmpn_nhgcd_itch':
>> > gcd_bin.c:(.text+0x80): multiple definition of `__gmpn_nhgcd_itch'
>> > gcd.o:gcd.c:(.text+0x80): first defined here
>> > ./.libs/libspeed.a(gcd_bin.o): In function `__gmpn_nhgcd':
>> > gcd_bin.c:(.text+0xc4): multiple definition of `__gmpn_nhgcd'
>> > gcd.o:gcd.c:(.text+0xc4): first defined here
>> > ./.libs/libspeed.a(gcd_bin.o): In function `mpn_basic_gcd':
>> > gcd_bin.c:(.text+0x2ed): multiple definition of `mpn_basic_gcd'
>> > gcd.o:gcd.c:(.text+0x2ed): first defined here
>> >
>> > Bill.
>> >
>> > 2008/12/23 Jason Martin <jason.worth.mar...@gmail.com>:
>> >> Attached are some edited versions of
>> >>
>> >> mpn/generic/gcd.c
>> >>
>> >> and
>> >>
>> >> mpn/generic/ngcd.c
>> >>
>> >> Drop them in, test them for correctness and speed.  Let me know what
>> >> breaks.  When everyone is happy, I'll check them in to svn
>> >>
>> >> --jason
>> >>
>> >> Jason Worth Martin
>> >> Asst. Professor of Mathematics
>> >> http://www.math.jmu.edu/~martin
>> >>
>> >>
>> >>
>> >> /* Schönhage's 1987 algorithm, reorganized into hgcd form */
>> >>
>> >> #include <stdio.h>  /* for NULL */
>> >>
>> >> #include "gmp.h"
>> >> #include "gmp-impl.h"
>> >> #include "longlong.h"
>> >>
>> >>
>> >> /* ******************************************************************
>> >>  *    Here we are including the original GMP version of mpn_gcd
>> >>  *    but we rename it as mpn_basic_gcd.  It needs to be available
>> >>  *    for the ngcd algorithm to call in the base case.
>> >>  *
>> >>  *  Preconditions [U = (up, usize) and V = (vp, vsize)]:
>> >>  *
>> >>  *   1.  V is odd.
>> >>  *   2.  numbits(U) >= numbits(V).
>> >>  *
>> >>  *   Both U and V are destroyed by the operation.  The result is left at
>> >> vp, *   and its size is returned.
>> >>  *
>> >>  *   Ken Weber (kwe...@mat.ufrgs.br, kwe...@mcs.kent.edu)
>> >>  *
>> >>  *   Funding for this work has been partially provided by Conselho
>> >>  *   Nacional de Desenvolvimento Cienti'fico e Tecnolo'gico (CNPq) do
>> >>  *   Brazil, Grant 301314194-2, and was done while I was a visiting
>> >>  *   reseacher in the Instituto de Matema'tica at Universidade Federal
>> >>  *   do Rio Grande do Sul (UFRGS).
>> >>  *
>> >>  *   Refer to K. Weber, The accelerated integer GCD algorithm, ACM
>> >>  *      Transactions on Mathematical Software, v. 21 (March), 1995,
>> >>  *      pp. 111-122.
>> >>  *
>> >>  * *****************************************************************/
>> >>
>> >>
>> >>
>> >> /* If MIN (usize, vsize) >= GCD_ACCEL_THRESHOLD, then the accelerated
>> >>   algorithm is used, otherwise the binary algorithm is used.  This may
>> >> be adjusted for different architectures.  */
>> >> #ifndef GCD_ACCEL_THRESHOLD
>> >> #define GCD_ACCEL_THRESHOLD 5
>> >> #endif
>> >>
>> >> /* When U and V differ in size by more than BMOD_THRESHOLD, the
>> >> accelerated algorithm reduces using the bmod operation.  Otherwise, the
>> >> k-ary reduction is used.  0 <= BMOD_THRESHOLD < GMP_NUMB_BITS.  */
>> >> enum
>> >>  {
>> >>    BMOD_THRESHOLD = GMP_NUMB_BITS/2
>> >>  };
>> >>
>> >>
>> >> /* Use binary algorithm to compute V <-- GCD (V, U) for usize, vsize ==
>> >> 2. Both U and V must be odd.  */
>> >> static inline mp_size_t
>> >> gcd_2 (mp_ptr vp, mp_srcptr up)
>> >> {
>> >>  mp_limb_t u0, u1, v0, v1;
>> >>  mp_size_t vsize;
>> >>
>> >>  u0 = up[0];
>> >>  u1 = up[1];
>> >>  v0 = vp[0];
>> >>  v1 = vp[1];
>> >>
>> >>  while (u1 != v1 && u0 != v0)
>> >>    {
>> >>      unsigned long int r;
>> >>      if (u1 > v1)
>> >>        {
>> >>          u1 -= v1 + (u0 < v0);
>> >>          u0 = (u0 - v0) & GMP_NUMB_MASK;
>> >>          count_trailing_zeros (r, u0);
>> >>          u0 = ((u1 << (GMP_NUMB_BITS - r)) & GMP_NUMB_MASK) | (u0 >> r);
>> >>          u1 >>= r;
>> >>        }
>> >>      else  /* u1 < v1.  */
>> >>        {
>> >>          v1 -= u1 + (v0 < u0);
>> >>          v0 = (v0 - u0) & GMP_NUMB_MASK;
>> >>          count_trailing_zeros (r, v0);
>> >>          v0 = ((v1 << (GMP_NUMB_BITS - r)) & GMP_NUMB_MASK) | (v0 >> r);
>> >>          v1 >>= r;
>> >>        }
>> >>    }
>> >>
>> >>  vp[0] = v0, vp[1] = v1, vsize = 1 + (v1 != 0);
>> >>
>> >>  /* If U == V == GCD, done.  Otherwise, compute GCD (V, |U - V|).  */
>> >>  if (u1 == v1 && u0 == v0)
>> >>    return vsize;
>> >>
>> >>  v0 = (u0 == v0) ? (u1 > v1) ? u1-v1 : v1-u1 : (u0 > v0) ? u0-v0 :
>> >> v0-u0; vp[0] = mpn_gcd_1 (vp, vsize, v0);
>> >>
>> >>  return 1;
>> >> }
>> >>
>> >> /* The function find_a finds 0 < N < 2^GMP_NUMB_BITS such that there
>> >> exists 0 < |D| < 2^GMP_NUMB_BITS, and N == D * C mod
>> >> 2^(2*GMP_NUMB_BITS). In the reference article, D was computed along with
>> >> N, but it is better to compute D separately as D <-- N / C mod
>> >> 2^(GMP_NUMB_BITS + 1), treating the result as a twos' complement signed
>> >> integer.
>> >>
>> >>   Initialize N1 to C mod 2^(2*GMP_NUMB_BITS).  According to the
>> >> reference article, N2 should be initialized to 2^(2*GMP_NUMB_BITS), but
>> >> we use 2^(2*GMP_NUMB_BITS) - N1 to start the calculations within double
>> >> precision.  If N2 > N1 initially, the first iteration of the while loop
>> >> will swap them.  In all other situations, N1 >= N2 is maintained.  */
>> >>
>> >> #if HAVE_NATIVE_mpn_gcd_finda
>> >> #define find_a(cp)  mpn_gcd_finda (cp)
>> >>
>> >> #else
>> >> static
>> >> #if ! defined (__i386__)
>> >> inline                          /* don't inline this for the x86 */
>> >> #endif
>> >> mp_limb_t
>> >> find_a (mp_srcptr cp)
>> >> {
>> >>  unsigned long int leading_zero_bits = 0;
>> >>
>> >>  mp_limb_t n1_l = cp[0];       /* N1 == n1_h * 2^GMP_NUMB_BITS + n1_l.
>> >> */ mp_limb_t n1_h = cp[1];
>> >>
>> >>  mp_limb_t n2_l = (-n1_l & GMP_NUMB_MASK);     /* N2 == n2_h *
>> >> 2^GMP_NUMB_BITS + n2_l.  */ mp_limb_t n2_h = (~n1_h & GMP_NUMB_MASK);
>> >>
>> >>  /* Main loop.  */
>> >>  while (n2_h != 0)             /* While N2 >= 2^GMP_NUMB_BITS.  */
>> >>    {
>> >>      /* N1 <-- N1 % N2.  */
>> >>      if (((GMP_NUMB_HIGHBIT >> leading_zero_bits) & n2_h) == 0)
>> >>        {
>> >>          unsigned long int i;
>> >>          count_leading_zeros (i, n2_h);
>> >>          i -= GMP_NAIL_BITS;
>> >>          i -= leading_zero_bits;
>> >>          leading_zero_bits += i;
>> >>          n2_h = ((n2_h << i) & GMP_NUMB_MASK) | (n2_l >> (GMP_NUMB_BITS
>> >> - i)); n2_l = (n2_l << i) & GMP_NUMB_MASK;
>> >>          do
>> >>            {
>> >>              if (n1_h > n2_h || (n1_h == n2_h && n1_l >= n2_l))
>> >>                {
>> >>                  n1_h -= n2_h + (n1_l < n2_l);
>> >>                  n1_l = (n1_l - n2_l) & GMP_NUMB_MASK;
>> >>                }
>> >>              n2_l = (n2_l >> 1) | ((n2_h << (GMP_NUMB_BITS - 1)) &
>> >> GMP_NUMB_MASK); n2_h >>= 1;
>> >>              i -= 1;
>> >>            }
>> >>          while (i != 0);
>> >>        }
>> >>      if (n1_h > n2_h || (n1_h == n2_h && n1_l >= n2_l))
>> >>        {
>> >>          n1_h -= n2_h + (n1_l < n2_l);
>> >>          n1_l = (n1_l - n2_l) & GMP_NUMB_MASK;
>> >>        }
>> >>
>> >>      MP_LIMB_T_SWAP (n1_h, n2_h);
>> >>      MP_LIMB_T_SWAP (n1_l, n2_l);
>> >>    }
>> >>
>> >>  return n2_l;
>> >> }
>> >> #endif
>> >>
>> >>
>> >> mp_size_t
>> >> mpn_basic_gcd (mp_ptr gp, mp_ptr up, mp_size_t usize, mp_ptr vp,
>> >> mp_size_t vsize) {
>> >>  mp_ptr orig_vp = vp;
>> >>  mp_size_t orig_vsize = vsize;
>> >>  int binary_gcd_ctr;           /* Number of times binary gcd will
>> >> execute.  */ mp_size_t scratch;
>> >>  mp_ptr tp;
>> >>  TMP_DECL;
>> >>
>> >>  ASSERT (usize >= 1);
>> >>  ASSERT (vsize >= 1);
>> >>  ASSERT (usize >= vsize);
>> >>  ASSERT (vp[0] & 1);
>> >>  ASSERT (up[usize - 1] != 0);
>> >>  ASSERT (vp[vsize - 1] != 0);
>> >> #if WANT_ASSERT
>> >>  if (usize == vsize)
>> >>    {
>> >>      int  uzeros, vzeros;
>> >>      count_leading_zeros (uzeros, up[usize - 1]);
>> >>      count_leading_zeros (vzeros, vp[vsize - 1]);
>> >>      ASSERT (uzeros <= vzeros);
>> >>    }
>> >> #endif
>> >>  ASSERT (! MPN_OVERLAP_P (up, usize, vp, vsize));
>> >>  ASSERT (MPN_SAME_OR_SEPARATE2_P (gp, vsize, up, usize));
>> >>  ASSERT (MPN_SAME_OR_SEPARATE2_P (gp, vsize, vp, vsize));
>> >>
>> >>  TMP_MARK;
>> >>
>> >>  /* Use accelerated algorithm if vsize is over GCD_ACCEL_THRESHOLD.
>> >>     Two EXTRA limbs for U and V are required for kary reduction.  */
>> >>  if (vsize >= GCD_ACCEL_THRESHOLD)
>> >>    {
>> >>      unsigned long int vbitsize, d;
>> >>      mp_ptr orig_up = up;
>> >>      mp_size_t orig_usize = usize;
>> >>      mp_ptr anchor_up = (mp_ptr) TMP_ALLOC ((usize + 2) *
>> >> BYTES_PER_MP_LIMB);
>> >>
>> >>      MPN_COPY (anchor_up, orig_up, usize);
>> >>      up = anchor_up;
>> >>
>> >>      count_leading_zeros (d, up[usize - 1]);
>> >>      d -= GMP_NAIL_BITS;
>> >>      d = usize * GMP_NUMB_BITS - d;
>> >>      count_leading_zeros (vbitsize, vp[vsize - 1]);
>> >>      vbitsize -= GMP_NAIL_BITS;
>> >>      vbitsize = vsize * GMP_NUMB_BITS - vbitsize;
>> >>      ASSERT (d >= vbitsize);
>> >>      d = d - vbitsize + 1;
>> >>
>> >>      /* Use bmod reduction to quickly discover whether V divides U.  */
>> >>      up[usize++] = 0;                          /* Insert leading zero.
>> >> */ mpn_bdivmod (up, up, usize, vp, vsize, d);
>> >>
>> >>      /* Now skip U/V mod 2^d and any low zero limbs.  */
>> >>      d /= GMP_NUMB_BITS, up += d, usize -= d;
>> >>      while (usize != 0 && up[0] == 0)
>> >>        up++, usize--;
>> >>
>> >>      if (usize == 0)                           /* GCD == ORIG_V.  */
>> >>        goto done;
>> >>
>> >>      vp = (mp_ptr) TMP_ALLOC ((vsize + 2) * BYTES_PER_MP_LIMB);
>> >>      MPN_COPY (vp, orig_vp, vsize);
>> >>
>> >>      do                                        /* Main loop.  */
>> >>        {
>> >>          /* mpn_com_n can't be used here because anchor_up and up may
>> >>             partially overlap */
>> >>          if ((up[usize - 1] & GMP_NUMB_HIGHBIT) != 0)  /* U < 0; take
>> >> twos' compl. */ {
>> >>              mp_size_t i;
>> >>              anchor_up[0] = -up[0] & GMP_NUMB_MASK;
>> >>              for (i = 1; i < usize; i++)
>> >>                anchor_up[i] = (~up[i] & GMP_NUMB_MASK);
>> >>              up = anchor_up;
>> >>            }
>> >>
>> >>          MPN_NORMALIZE_NOT_ZERO (up, usize);
>> >>
>> >>          if ((up[0] & 1) == 0)                 /* Result even; remove
>> >> twos. */ {
>> >>              unsigned int r;
>> >>              count_trailing_zeros (r, up[0]);
>> >>              mpn_rshift (anchor_up, up, usize, r);
>> >>              usize -= (anchor_up[usize - 1] == 0);
>> >>            }
>> >>          else if (anchor_up != up)
>> >>            MPN_COPY_INCR (anchor_up, up, usize);
>> >>
>> >>          MPN_PTR_SWAP (anchor_up,usize, vp,vsize);
>> >>          up = anchor_up;
>> >>
>> >>          if (vsize <= 2)               /* Kary can't handle < 2 limbs
>> >> and  */ break;                      /* isn't efficient for == 2 limbs.
>> >> */
>> >>
>> >>          d = vbitsize;
>> >>          count_leading_zeros (vbitsize, vp[vsize - 1]);
>> >>          vbitsize -= GMP_NAIL_BITS;
>> >>          vbitsize = vsize * GMP_NUMB_BITS - vbitsize;
>> >>          d = d - vbitsize + 1;
>> >>
>> >>          if (d > BMOD_THRESHOLD)       /* Bmod reduction.  */
>> >>            {
>> >>              up[usize++] = 0;
>> >>              mpn_bdivmod (up, up, usize, vp, vsize, d);
>> >>              d /= GMP_NUMB_BITS, up += d, usize -= d;
>> >>            }
>> >>          else                          /* Kary reduction.  */
>> >>            {
>> >>              mp_limb_t bp[2], cp[2];
>> >>
>> >>              /* C <-- V/U mod 2^(2*GMP_NUMB_BITS).  */
>> >>              {
>> >>                mp_limb_t u_inv, hi, lo;
>> >>                modlimb_invert (u_inv, up[0]);
>> >>                cp[0] = (vp[0] * u_inv) & GMP_NUMB_MASK;
>> >>                umul_ppmm (hi, lo, cp[0], up[0] << GMP_NAIL_BITS);
>> >>                lo >>= GMP_NAIL_BITS;
>> >>                cp[1] = (vp[1] - hi - cp[0] * up[1]) * u_inv &
>> >> GMP_NUMB_MASK; }
>> >>
>> >>              /* U <-- find_a (C)  *  U.  */
>> >>              up[usize] = mpn_mul_1 (up, up, usize, find_a (cp));
>> >>              usize++;
>> >>
>> >>              /* B <-- A/C == U/V mod 2^(GMP_NUMB_BITS + 1).
>> >>                  bp[0] <-- U/V mod 2^GMP_NUMB_BITS and
>> >>                  bp[1] <-- ( (U - bp[0] * V)/2^GMP_NUMB_BITS ) / V mod 2
>> >>
>> >>                  Like V/U above, but simplified because only the low bit
>> >> of bp[1] is wanted. */
>> >>              {
>> >>                mp_limb_t  v_inv, hi, lo;
>> >>                modlimb_invert (v_inv, vp[0]);
>> >>                bp[0] = (up[0] * v_inv) & GMP_NUMB_MASK;
>> >>                umul_ppmm (hi, lo, bp[0], vp[0] << GMP_NAIL_BITS);
>> >>                lo >>= GMP_NAIL_BITS;
>> >>                bp[1] = (up[1] + hi + (bp[0] & vp[1])) & 1;
>> >>              }
>> >>
>> >>              up[usize++] = 0;
>> >>              if (bp[1] != 0)   /* B < 0: U <-- U + (-B)  * V.  */
>> >>                {
>> >>                   mp_limb_t c = mpn_addmul_1 (up, vp, vsize, -bp[0] &
>> >> GMP_NUMB_MASK); mpn_add_1 (up + vsize, up + vsize, usize - vsize, c); }
>> >>              else              /* B >= 0:  U <-- U - B * V.  */
>> >>                {
>> >>                  mp_limb_t b = mpn_submul_1 (up, vp, vsize, bp[0]);
>> >>                  mpn_sub_1 (up + vsize, up + vsize, usize - vsize, b);
>> >>                }
>> >>
>> >>              up += 2, usize -= 2;  /* At least two low limbs are zero.
>> >> */ }
>> >>
>> >>          /* Must remove low zero limbs before complementing.  */
>> >>          while (usize != 0 && up[0] == 0)
>> >>            up++, usize--;
>> >>        }
>> >>      while (usize != 0);
>> >>
>> >>      /* Compute GCD (ORIG_V, GCD (ORIG_U, V)).  Binary will execute
>> >> twice.  */ up = orig_up, usize = orig_usize;
>> >>      binary_gcd_ctr = 2;
>> >>    }
>> >>  else
>> >>    binary_gcd_ctr = 1;
>> >>
>> >>  scratch = MPN_NGCD_LEHMER_ITCH (vsize);
>> >>  if (usize + 1 > scratch)
>> >>    scratch = usize + 1;
>> >>
>> >>  tp = TMP_ALLOC_LIMBS (scratch);
>> >>
>> >>  /* Finish up with the binary algorithm.  Executes once or twice.  */
>> >>  for ( ; binary_gcd_ctr--; up = orig_vp, usize = orig_vsize)
>> >>    {
>> >> #if 1
>> >>      if (usize > vsize)
>> >>        {
>> >>          /* FIXME: Could use mpn_bdivmod. */
>> >>          mp_size_t rsize;
>> >>
>> >>          mpn_tdiv_qr (tp + vsize, tp, 0, up, usize, vp, vsize);
>> >>          rsize = vsize;
>> >>          MPN_NORMALIZE (tp, rsize);
>> >>          if (rsize == 0)
>> >>            continue;
>> >>
>> >>          MPN_COPY (up, tp, vsize);
>> >>        }
>> >>      vsize = mpn_ngcd_lehmer (vp, up, vp, vsize, tp);
>> >> #else
>> >>      if (usize > 2)            /* First make U close to V in size.  */
>> >>        {
>> >>          unsigned long int vbitsize, d;
>> >>          count_leading_zeros (d, up[usize - 1]);
>> >>          d -= GMP_NAIL_BITS;
>> >>          d = usize * GMP_NUMB_BITS - d;
>> >>          count_leading_zeros (vbitsize, vp[vsize - 1]);
>> >>          vbitsize -= GMP_NAIL_BITS;
>> >>          vbitsize = vsize * GMP_NUMB_BITS - vbitsize;
>> >>          d = d - vbitsize - 1;
>> >>          if (d != -(unsigned long int)1 && d > 2)
>> >>            {
>> >>              mpn_bdivmod (up, up, usize, vp, vsize, d);  /* Result > 0.
>> >> */ d /= (unsigned long int)GMP_NUMB_BITS, up += d, usize -= d; }
>> >>        }
>> >>
>> >>      /* Start binary GCD.  */
>> >>      do
>> >>        {
>> >>          mp_size_t zeros;
>> >>
>> >>          /* Make sure U is odd.  */
>> >>          MPN_NORMALIZE (up, usize);
>> >>          while (up[0] == 0)
>> >>            up += 1, usize -= 1;
>> >>          if ((up[0] & 1) == 0)
>> >>            {
>> >>              unsigned int r;
>> >>              count_trailing_zeros (r, up[0]);
>> >>              mpn_rshift (up, up, usize, r);
>> >>              usize -= (up[usize - 1] == 0);
>> >>            }
>> >>
>> >>          /* Keep usize >= vsize.  */
>> >>          if (usize < vsize)
>> >>            MPN_PTR_SWAP (up, usize, vp, vsize);
>> >>
>> >>          if (usize <= 2)                               /* Double
>> >> precision. */ {
>> >>              if (vsize == 1)
>> >>                vp[0] = mpn_gcd_1 (up, usize, vp[0]);
>> >>              else
>> >>                vsize = gcd_2 (vp, up);
>> >>              break;                                    /* Binary GCD
>> >> done.  */ }
>> >>
>> >>          /* Count number of low zero limbs of U - V.  */
>> >>          for (zeros = 0; up[zeros] == vp[zeros] && ++zeros != vsize; )
>> >>            continue;
>> >>
>> >>          /* If U < V, swap U and V; in any case, subtract V from U.  */
>> >>          if (zeros == vsize)                           /* Subtract done.
>> >>  */ up += zeros, usize -= zeros;
>> >>          else if (usize == vsize)
>> >>            {
>> >>              mp_size_t size = vsize;
>> >>              do
>> >>                size--;
>> >>              while (up[size] == vp[size]);
>> >>              if (up[size] < vp[size])                  /* usize ==
>> >> vsize.  */ MP_PTR_SWAP (up, vp);
>> >>              up += zeros, usize = size + 1 - zeros;
>> >>              mpn_sub_n (up, up, vp + zeros, usize);
>> >>            }
>> >>          else
>> >>            {
>> >>              mp_size_t size = vsize - zeros;
>> >>              up += zeros, usize -= zeros;
>> >>              if (mpn_sub_n (up, up, vp + zeros, size))
>> >>                {
>> >>                  while (up[size] == 0)                 /* Propagate
>> >> borrow. */ up[size++] = -(mp_limb_t)1;
>> >>                  up[size] -= 1;
>> >>                }
>> >>            }
>> >>        }
>> >>      while (usize);                                    /* End binary
>> >> GCD.  */ #endif
>> >>    }
>> >>
>> >> done:
>> >>  if (vp != gp)
>> >>    MPN_COPY_INCR (gp, vp, vsize);
>> >>  TMP_FREE;
>> >>  return vsize;
>> >> }
>> >>
>> >>
>> >>
>> >> /* ******************************************************************
>> >>  *     END of original GMP mpn_gcd
>> >>  * *****************************************************************/
>> >>
>> >>
>> >>
>> >>
>> >>
>> >> /* For input of size n, matrix elements are of size at most ceil(n/2)
>> >>   - 1, but we need one limb extra. */
>> >>
>> >> void
>> >> mpn_ngcd_matrix_init (struct ngcd_matrix *M, mp_size_t n, mp_ptr p)
>> >> {
>> >>  mp_size_t s = (n+1)/2;
>> >>  M->alloc = s;
>> >>  M->n = 1;
>> >>  MPN_ZERO (p, 4 * s);
>> >>  M->p[0][0] = p;
>> >>  M->p[0][1] = p + s;
>> >>  M->p[1][0] = p + 2 * s;
>> >>  M->p[1][1] = p + 3 * s;
>> >>  M->tp = p + 4*s;
>> >>
>> >>  M->p[0][0][0] = M->p[1][1][0] = 1;
>> >> }
>> >>
>> >> #define NHGCD_BASE_ITCH MPN_NGCD_STEP_ITCH
>> >>
>> >> /* Reduces a,b until |a-b| fits in n/2 + 1 limbs. Constructs matrix M
>> >>   with elements of size at most (n+1)/2 - 1. Returns new size of a,
>> >>   b, or zero if no reduction is possible. */
>> >> static mp_size_t
>> >> nhgcd_base (mp_ptr ap, mp_ptr bp, mp_size_t n,
>> >>            struct ngcd_matrix *M, mp_ptr tp)
>> >> {
>> >>  mp_size_t s = n/2 + 1;
>> >>  mp_size_t nn;
>> >>
>> >>  ASSERT (n > s);
>> >>  ASSERT (ap[n-1] > 0 || bp[n-1] > 0);
>> >>
>> >>  nn = mpn_ngcd_step (n, ap, bp, s, M, tp);
>> >>  if (!nn)
>> >>    return 0;
>> >>
>> >>  for (;;)
>> >>    {
>> >>      n = nn;
>> >>      ASSERT (n > s);
>> >>      nn = mpn_ngcd_step (n, ap, bp, s, M, tp);
>> >>      if (!nn )
>> >>        return n;
>> >>    }
>> >> }
>> >>
>> >> /* Size analysis for nhgcd:
>> >>
>> >>   For the recursive calls, we have n1 <= ceil(n / 2). Then the
>> >>   storage need is determined by the storage for the recursive call
>> >>   computing M1, and ngcd_matrix_adjust and ngcd_matrix_mul calls that
>> >> use M1 (after this, the storage needed for M1 can be recycled).
>> >>
>> >>   Let S(r) denote the required storage. For M1 we need 5 * ceil(n1/2)
>> >>   = 5 * ceil(n/4), and for the ngcd_matrix_adjust call, we need n + 2.
>> >> In total, 5 * ceil(n/4) + n + 2 <= 9 ceil(n/4) + 2.
>> >>
>> >>   For the recursive call, we need S(n1) = S(ceil(n/2)).
>> >>
>> >>   S(n) <= 9*ceil(n/4) + 2 + S(ceil(n/2))
>> >>        <= 9*(ceil(n/4) + ... + ceil(n/2^(1+k))) + 2k + S(ceil(n/2^k))
>> >>        <= 9*(2 ceil(n/4) + k) + 2k + S(n/2^k)
>> >>        <= 18 ceil(n/4) + 11k + S(n/2^k)
>> >>
>> >> */
>> >>
>> >> mp_size_t
>> >> mpn_nhgcd_itch (mp_size_t n)
>> >> {
>> >>  unsigned k;
>> >>  mp_size_t nn;
>> >>
>> >>  /* Inefficient way to almost compute
>> >>     log_2(n/NHGCD_BASE_THRESHOLD) */
>> >>  for (k = 0, nn = n;
>> >>       ABOVE_THRESHOLD (nn, NHGCD_THRESHOLD);
>> >>       nn = (nn + 1) / 2)
>> >>    k++;
>> >>
>> >>  if (k == 0)
>> >>    return NHGCD_BASE_ITCH (n);
>> >>
>> >>  return 18 * ((n+3) / 4) + 11 * k
>> >>    + NHGCD_BASE_ITCH (NHGCD_THRESHOLD);
>> >> }
>> >>
>> >> /* Reduces a,b until |a-b| fits in n/2 + 1 limbs. Constructs matrix M
>> >>   with elements of size at most (n+1)/2 - 1. Returns new size of a,
>> >>   b, or zero if no reduction is possible. */
>> >>
>> >> mp_size_t
>> >> mpn_nhgcd (mp_ptr ap, mp_ptr bp, mp_size_t n,
>> >>           struct ngcd_matrix *M, mp_ptr tp)
>> >> {
>> >>  mp_size_t s = n/2 + 1;
>> >>  mp_size_t n2 = (3*n)/4 + 1;
>> >>
>> >>  mp_size_t p, nn;
>> >>  unsigned count;
>> >>  int success = 0;
>> >>
>> >>  ASSERT (n > s);
>> >>  ASSERT ((ap[n-1] | bp[n-1]) > 0);
>> >>
>> >>  ASSERT ((n+1)/2 - 1 < M->alloc);
>> >>
>> >>  if (BELOW_THRESHOLD (n, NHGCD_THRESHOLD))
>> >>    return nhgcd_base (ap, bp, n, M, tp);
>> >>
>> >>  p = n/2;
>> >>  nn = mpn_nhgcd (ap + p, bp + p, n - p, M, tp);
>> >>  if (nn > 0)
>> >>    {
>> >>      /* Needs 2*(p + M->n) <= 2*(floor(n/2) + ceil(n/2) - 1)
>> >>         = 2 (n - 1) */
>> >>      n = mpn_ngcd_matrix_adjust (M, p + nn, ap, bp, p, tp);
>> >>      success = 1;
>> >>    }
>> >>  count = 0;
>> >>  while (n > n2)
>> >>    {
>> >>      count++;
>> >>      /* Needs n + 1 storage */
>> >>      nn = mpn_ngcd_step (n, ap, bp, s, M, tp);
>> >>      if (!nn)
>> >>        return success ? n : 0;
>> >>      n = nn;
>> >>      success = 1;
>> >>    }
>> >>
>> >>  if (n > s + 2)
>> >>    {
>> >>      struct ngcd_matrix M1;
>> >>      mp_size_t scratch;
>> >>
>> >>      p = 2*s - n + 1;
>> >>      scratch = MPN_NGCD_MATRIX_INIT_ITCH (n-p);
>> >>
>> >>      mpn_ngcd_matrix_init(&M1, n - p, tp);
>> >>      nn = mpn_nhgcd (ap + p, bp + p, n - p, &M1, tp + scratch);
>> >>      if (nn > 0)
>> >>        {
>> >>          /* Needs 2 (p + M->n) <= 2 (2*s - n2 + 1 + n2 - s - 1)
>> >>             = 2*s <= 2*(floor(n/2) + 1) <= n + 2. */
>> >>          n = mpn_ngcd_matrix_adjust (&M1, p + nn, ap, bp, p, tp +
>> >> scratch); /* Needs M->n <= n2 - s - 1 < n/4 */
>> >>          mpn_ngcd_matrix_mul (M, &M1, tp + scratch);
>> >>          success = 1;
>> >>        }
>> >>    }
>> >>
>> >>  /* FIXME: This really is the base case */
>> >>  for (count = 0;; count++)
>> >>    {
>> >>      /* Needs s+3 < n */
>> >>      nn = mpn_ngcd_step (n, ap, bp, s, M, tp);
>> >>      if (!nn)
>> >>        return success ? n : 0;
>> >>
>> >>      n = nn;
>> >>      success = 1;
>> >>    }
>> >> }
>> >>
>> >> #define EVEN_P(x) (((x) & 1) == 0)
>> >>
>> >> mp_size_t
>> >> mpn_gcd (mp_ptr gp, mp_ptr ap, mp_size_t an, mp_ptr bp, mp_size_t n)
>> >> {
>> >>  mp_size_t init_scratch;
>> >>  mp_size_t scratch;
>> >>  mp_ptr tp;
>> >>  TMP_DECL;
>> >>
>> >>  ASSERT (an >= n);
>> >>
>> >>  if (BELOW_THRESHOLD (n, NGCD_THRESHOLD))
>> >>    return mpn_basic_gcd (gp, ap, an, bp, n);
>> >>
>> >>  init_scratch = MPN_NGCD_MATRIX_INIT_ITCH ((n+1)/2);
>> >>  scratch = mpn_nhgcd_itch ((n+1)/2);
>> >>
>> >>  /* Space needed for mpn_ngcd_matrix_adjust */
>> >>  if (scratch < 2*n)
>> >>    scratch = 2*n;
>> >>
>> >>  TMP_MARK;
>> >>
>> >>  if (an + 1 > init_scratch + scratch)
>> >>    tp = TMP_ALLOC_LIMBS (an + 1);
>> >>  else
>> >>    tp = TMP_ALLOC_LIMBS (init_scratch + scratch);
>> >>
>> >>  if (an > n)
>> >>    {
>> >>      mp_ptr rp = tp;
>> >>      mp_ptr qp = rp + n;
>> >>
>> >>      mpn_tdiv_qr (qp, rp, 0, ap, an, bp, n);
>> >>      MPN_COPY (ap, rp, n);
>> >>      an = n;
>> >>      MPN_NORMALIZE (ap, an);
>> >>      if (an == 0)
>> >>        {
>> >>          MPN_COPY (gp, bp, n);
>> >>          TMP_FREE;
>> >>          return n;
>> >>        }
>> >>    }
>> >>
>> >>  while (ABOVE_THRESHOLD (n, NGCD_THRESHOLD))
>> >>    {
>> >>      struct ngcd_matrix M;
>> >>      mp_size_t p = n/2;
>> >>      mp_size_t nn;
>> >>
>> >>      mpn_ngcd_matrix_init (&M, n - p, tp);
>> >>      nn = mpn_nhgcd (ap + p, bp + p, n - p, &M, tp + init_scratch);
>> >>      if (nn > 0)
>> >>        /* Needs 2*(p + M->n) <= 2*(floor(n/2) + ceil(n/2) - 1)
>> >>           = 2(n-1) */
>> >>        n = mpn_ngcd_matrix_adjust (&M, p + nn, ap, bp, p, tp +
>> >> init_scratch);
>> >>
>> >>      else
>> >>        {
>> >>          mp_size_t gn;
>> >>          n = mpn_ngcd_subdiv_step (gp, &gn, ap, bp, n, tp);
>> >>          if (n == 0)
>> >>            {
>> >>              TMP_FREE;
>> >>              return gn;
>> >>            }
>> >>        }
>> >>    }
>> >>
>> >>  ASSERT (ap[n-1] > 0 || bp[n-1] > 0);
>> >> #if 0
>> >>  /* FIXME: We may want to use lehmer on some systems. */
>> >>  n = mpn_ngcd_lehmer (gp, ap, bp, n, tp);
>> >>
>> >>  TMP_FREE;
>> >>  return n;
>> >> #endif
>> >>
>> >>  if (ap[n-1] < bp[n-1])
>> >>    MP_PTR_SWAP (ap, bp);
>> >>
>> >>  an = n;
>> >>  MPN_NORMALIZE (bp, n);
>> >>
>> >>  if (n == 0)
>> >>    {
>> >>      MPN_COPY (gp, ap, an);
>> >>      TMP_FREE;
>> >>      return an;
>> >>    }
>> >>
>> >>  if (EVEN_P (bp[0]))
>> >>    {
>> >>      /* Then a must be odd (since the calling convention implies that
>> >>         there's no common factor of 2) */
>> >>      ASSERT (!EVEN_P (ap[0]));
>> >>
>> >>      while (bp[0] == 0)
>> >>        {
>> >>          bp++;
>> >>          n--;
>> >>        }
>> >>
>> >>      if (EVEN_P(bp[0]))
>> >>        {
>> >>          int count;
>> >>          count_trailing_zeros (count, bp[0]);
>> >>          ASSERT_NOCARRY (mpn_rshift (bp, bp, n, count));
>> >>          n -= (bp[n-1] == 0);
>> >>        }
>> >>    }
>> >>
>> >>  TMP_FREE;
>> >>  return mpn_basic_gcd (gp, ap, an, bp, n);
>> >> }
>> >>
>> >> /* Schönhage's 1987 algorithm, reorganized into hgcd form */
>> >>
>> >> #include <stdio.h>  /* for NULL */
>> >>
>> >> #include "gmp.h"
>> >> #include "gmp-impl.h"
>> >> #include "longlong.h"
>> >>
>> >>
>> >>
>> >>
>> >>
>> >>
>> >> /* For input of size n, matrix elements are of size at most ceil(n/2)
>> >>   - 1, but we need one limb extra. */
>> >>
>> >> void
>> >> mpn_ngcd_matrix_init (struct ngcd_matrix *M, mp_size_t n, mp_ptr p);
>> >>
>> >> #define NHGCD_BASE_ITCH MPN_NGCD_STEP_ITCH
>> >>
>> >> /* Reduces a,b until |a-b| fits in n/2 + 1 limbs. Constructs matrix M
>> >>   with elements of size at most (n+1)/2 - 1. Returns new size of a,
>> >>   b, or zero if no reduction is possible. */
>> >> static mp_size_t
>> >> nhgcd_base (mp_ptr ap, mp_ptr bp, mp_size_t n,
>> >>            struct ngcd_matrix *M, mp_ptr tp);
>> >>
>> >> /* Size analysis for nhgcd:
>> >>
>> >>   For the recursive calls, we have n1 <= ceil(n / 2). Then the
>> >>   storage need is determined by the storage for the recursive call
>> >>   computing M1, and ngcd_matrix_adjust and ngcd_matrix_mul calls that
>> >> use M1 (after this, the storage needed for M1 can be recycled).
>> >>
>> >>   Let S(r) denote the required storage. For M1 we need 5 * ceil(n1/2)
>> >>   = 5 * ceil(n/4), and for the ngcd_matrix_adjust call, we need n + 2.
>> >> In total, 5 * ceil(n/4) + n + 2 <= 9 ceil(n/4) + 2.
>> >>
>> >>   For the recursive call, we need S(n1) = S(ceil(n/2)).
>> >>
>> >>   S(n) <= 9*ceil(n/4) + 2 + S(ceil(n/2))
>> >>        <= 9*(ceil(n/4) + ... + ceil(n/2^(1+k))) + 2k + S(ceil(n/2^k))
>> >>        <= 9*(2 ceil(n/4) + k) + 2k + S(n/2^k)
>> >>        <= 18 ceil(n/4) + 11k + S(n/2^k)
>> >>
>> >> */
>> >>
>> >> mp_size_t
>> >> mpn_nhgcd_itch (mp_size_t n);
>> >>
>> >>
>> >> /* Reduces a,b until |a-b| fits in n/2 + 1 limbs. Constructs matrix M
>> >>   with elements of size at most (n+1)/2 - 1. Returns new size of a,
>> >>   b, or zero if no reduction is possible. */
>> >>
>> >> mp_size_t
>> >> mpn_nhgcd (mp_ptr ap, mp_ptr bp, mp_size_t n,
>> >>           struct ngcd_matrix *M, mp_ptr tp);
>> >>
>> >>
>> >> #define EVEN_P(x) (((x) & 1) == 0)
>> >>
>> >> mp_size_t
>> >> mpn_ngcd (mp_ptr gp, mp_ptr ap, mp_size_t an, mp_ptr bp, mp_size_t n)
>> >> {
>> >>  mp_size_t init_scratch;
>> >>  mp_size_t scratch;
>> >>  mp_ptr tp;
>> >>  TMP_DECL;
>> >>
>> >>  ASSERT (an >= n);
>> >>
>> >>  if (BELOW_THRESHOLD (n, NGCD_THRESHOLD))
>> >>    return mpn_basic_gcd (gp, ap, an, bp, n);
>> >>
>> >>  init_scratch = MPN_NGCD_MATRIX_INIT_ITCH ((n+1)/2);
>> >>  scratch = mpn_nhgcd_itch ((n+1)/2);
>> >>
>> >>  /* Space needed for mpn_ngcd_matrix_adjust */
>> >>  if (scratch < 2*n)
>> >>    scratch = 2*n;
>> >>
>> >>  TMP_MARK;
>> >>
>> >>  if (an + 1 > init_scratch + scratch)
>> >>    tp = TMP_ALLOC_LIMBS (an + 1);
>> >>  else
>> >>    tp = TMP_ALLOC_LIMBS (init_scratch + scratch);
>> >>
>> >>  if (an > n)
>> >>    {
>> >>      mp_ptr rp = tp;
>> >>      mp_ptr qp = rp + n;
>> >>
>> >>      mpn_tdiv_qr (qp, rp, 0, ap, an, bp, n);
>> >>      MPN_COPY (ap, rp, n);
>> >>      an = n;
>> >>      MPN_NORMALIZE (ap, an);
>> >>      if (an == 0)
>> >>        {
>> >>          MPN_COPY (gp, bp, n);
>> >>          TMP_FREE;
>> >>          return n;
>> >>        }
>> >>    }
>> >>
>> >>  while (ABOVE_THRESHOLD (n, NGCD_THRESHOLD))
>> >>    {
>> >>      struct ngcd_matrix M;
>> >>      mp_size_t p = n/2;
>> >>      mp_size_t nn;
>> >>
>> >>      mpn_ngcd_matrix_init (&M, n - p, tp);
>> >>      nn = mpn_nhgcd (ap + p, bp + p, n - p, &M, tp + init_scratch);
>> >>      if (nn > 0)
>> >>        /* Needs 2*(p + M->n) <= 2*(floor(n/2) + ceil(n/2) - 1)
>> >>           = 2(n-1) */
>> >>        n = mpn_ngcd_matrix_adjust (&M, p + nn, ap, bp, p, tp +
>> >> init_scratch);
>> >>
>> >>      else
>> >>        {
>> >>          mp_size_t gn;
>> >>          n = mpn_ngcd_subdiv_step (gp, &gn, ap, bp, n, tp);
>> >>          if (n == 0)
>> >>            {
>> >>              TMP_FREE;
>> >>              return gn;
>> >>            }
>> >>        }
>> >>    }
>> >>
>> >>  ASSERT (ap[n-1] > 0 || bp[n-1] > 0);
>> >> #if 0
>> >>  /* FIXME: We may want to use lehmer on some systems. */
>> >>  n = mpn_ngcd_lehmer (gp, ap, bp, n, tp);
>> >>
>> >>  TMP_FREE;
>> >>  return n;
>> >> #endif
>> >>
>> >>  if (ap[n-1] < bp[n-1])
>> >>    MP_PTR_SWAP (ap, bp);
>> >>
>> >>  an = n;
>> >>  MPN_NORMALIZE (bp, n);
>> >>
>> >>  if (n == 0)
>> >>    {
>> >>      MPN_COPY (gp, ap, an);
>> >>      TMP_FREE;
>> >>      return an;
>> >>    }
>> >>
>> >>  if (EVEN_P (bp[0]))
>> >>    {
>> >>      /* Then a must be odd (since the calling convention implies that
>> >>         there's no common factor of 2) */
>> >>      ASSERT (!EVEN_P (ap[0]));
>> >>
>> >>      while (bp[0] == 0)
>> >>        {
>> >>          bp++;
>> >>          n--;
>> >>        }
>> >>
>> >>      if (EVEN_P(bp[0]))
>> >>        {
>> >>          int count;
>> >>          count_trailing_zeros (count, bp[0]);
>> >>          ASSERT_NOCARRY (mpn_rshift (bp, bp, n, count));
>> >>          n -= (bp[n-1] == 0);
>> >>        }
>> >>    }
>> >>
>> >>  TMP_FREE;
>> >>  return mpn_basic_gcd (gp, ap, an, bp, n);
>> >> }
>>
>>
>
>
> >
>

--~--~---------~--~----~------------~-------~--~----~
You received this message because you are subscribed to the Google Groups 
"mpir-devel" group.
To post to this group, send email to mpir-devel@googlegroups.com
To unsubscribe from this group, send email to 
mpir-devel+unsubscr...@googlegroups.com
For more options, visit this group at 
http://groups.google.com/group/mpir-devel?hl=en
-~----------~----~----~----~------~----~------~--~---

Reply via email to