On Wednesday 24 December 2008 00:44:22 Bill Hart wrote:
> Times seem great for GCD. Just some build issues to fix and we're done!
>
> Oh and I need to fix the perfect power bug.
>

I've got a fix , but I would like to check it some more tomorrow.

Jason



> Bill.
>
> 2008/12/24 Bill Hart <goodwillh...@googlemail.com>:
> > On sage.math:
> >
> > cd tune
> > make tune
> >
> > ./.libs/libspeed.a(gcd_bin.o): In function `__gmpn_ngcd_matrix_init':
> > gcd_bin.c:(.text+0x0): multiple definition of `__gmpn_ngcd_matrix_init'
> > gcd.o:gcd.c:(.text+0x0): first defined here
> > ./.libs/libspeed.a(gcd_bin.o): In function `__gmpn_nhgcd_itch':
> > gcd_bin.c:(.text+0x80): multiple definition of `__gmpn_nhgcd_itch'
> > gcd.o:gcd.c:(.text+0x80): first defined here
> > ./.libs/libspeed.a(gcd_bin.o): In function `__gmpn_nhgcd':
> > gcd_bin.c:(.text+0xc4): multiple definition of `__gmpn_nhgcd'
> > gcd.o:gcd.c:(.text+0xc4): first defined here
> > ./.libs/libspeed.a(gcd_bin.o): In function `mpn_basic_gcd':
> > gcd_bin.c:(.text+0x2ed): multiple definition of `mpn_basic_gcd'
> > gcd.o:gcd.c:(.text+0x2ed): first defined here
> >
> > Bill.
> >
> > 2008/12/23 Jason Martin <jason.worth.mar...@gmail.com>:
> >> Attached are some edited versions of
> >>
> >> mpn/generic/gcd.c
> >>
> >> and
> >>
> >> mpn/generic/ngcd.c
> >>
> >> Drop them in, test them for correctness and speed.  Let me know what
> >> breaks.  When everyone is happy, I'll check them in to svn
> >>
> >> --jason
> >>
> >> Jason Worth Martin
> >> Asst. Professor of Mathematics
> >> http://www.math.jmu.edu/~martin
> >>
> >>
> >>
> >> /* Schönhage's 1987 algorithm, reorganized into hgcd form */
> >>
> >> #include <stdio.h>  /* for NULL */
> >>
> >> #include "gmp.h"
> >> #include "gmp-impl.h"
> >> #include "longlong.h"
> >>
> >>
> >> /* ******************************************************************
> >>  *    Here we are including the original GMP version of mpn_gcd
> >>  *    but we rename it as mpn_basic_gcd.  It needs to be available
> >>  *    for the ngcd algorithm to call in the base case.
> >>  *
> >>  *  Preconditions [U = (up, usize) and V = (vp, vsize)]:
> >>  *
> >>  *   1.  V is odd.
> >>  *   2.  numbits(U) >= numbits(V).
> >>  *
> >>  *   Both U and V are destroyed by the operation.  The result is left at
> >> vp, *   and its size is returned.
> >>  *
> >>  *   Ken Weber (kwe...@mat.ufrgs.br, kwe...@mcs.kent.edu)
> >>  *
> >>  *   Funding for this work has been partially provided by Conselho
> >>  *   Nacional de Desenvolvimento Cienti'fico e Tecnolo'gico (CNPq) do
> >>  *   Brazil, Grant 301314194-2, and was done while I was a visiting
> >>  *   reseacher in the Instituto de Matema'tica at Universidade Federal
> >>  *   do Rio Grande do Sul (UFRGS).
> >>  *
> >>  *   Refer to K. Weber, The accelerated integer GCD algorithm, ACM
> >>  *      Transactions on Mathematical Software, v. 21 (March), 1995,
> >>  *      pp. 111-122.
> >>  *
> >>  * *****************************************************************/
> >>
> >>
> >>
> >> /* If MIN (usize, vsize) >= GCD_ACCEL_THRESHOLD, then the accelerated
> >>   algorithm is used, otherwise the binary algorithm is used.  This may
> >> be adjusted for different architectures.  */
> >> #ifndef GCD_ACCEL_THRESHOLD
> >> #define GCD_ACCEL_THRESHOLD 5
> >> #endif
> >>
> >> /* When U and V differ in size by more than BMOD_THRESHOLD, the
> >> accelerated algorithm reduces using the bmod operation.  Otherwise, the
> >> k-ary reduction is used.  0 <= BMOD_THRESHOLD < GMP_NUMB_BITS.  */
> >> enum
> >>  {
> >>    BMOD_THRESHOLD = GMP_NUMB_BITS/2
> >>  };
> >>
> >>
> >> /* Use binary algorithm to compute V <-- GCD (V, U) for usize, vsize ==
> >> 2. Both U and V must be odd.  */
> >> static inline mp_size_t
> >> gcd_2 (mp_ptr vp, mp_srcptr up)
> >> {
> >>  mp_limb_t u0, u1, v0, v1;
> >>  mp_size_t vsize;
> >>
> >>  u0 = up[0];
> >>  u1 = up[1];
> >>  v0 = vp[0];
> >>  v1 = vp[1];
> >>
> >>  while (u1 != v1 && u0 != v0)
> >>    {
> >>      unsigned long int r;
> >>      if (u1 > v1)
> >>        {
> >>          u1 -= v1 + (u0 < v0);
> >>          u0 = (u0 - v0) & GMP_NUMB_MASK;
> >>          count_trailing_zeros (r, u0);
> >>          u0 = ((u1 << (GMP_NUMB_BITS - r)) & GMP_NUMB_MASK) | (u0 >> r);
> >>          u1 >>= r;
> >>        }
> >>      else  /* u1 < v1.  */
> >>        {
> >>          v1 -= u1 + (v0 < u0);
> >>          v0 = (v0 - u0) & GMP_NUMB_MASK;
> >>          count_trailing_zeros (r, v0);
> >>          v0 = ((v1 << (GMP_NUMB_BITS - r)) & GMP_NUMB_MASK) | (v0 >> r);
> >>          v1 >>= r;
> >>        }
> >>    }
> >>
> >>  vp[0] = v0, vp[1] = v1, vsize = 1 + (v1 != 0);
> >>
> >>  /* If U == V == GCD, done.  Otherwise, compute GCD (V, |U - V|).  */
> >>  if (u1 == v1 && u0 == v0)
> >>    return vsize;
> >>
> >>  v0 = (u0 == v0) ? (u1 > v1) ? u1-v1 : v1-u1 : (u0 > v0) ? u0-v0 :
> >> v0-u0; vp[0] = mpn_gcd_1 (vp, vsize, v0);
> >>
> >>  return 1;
> >> }
> >>
> >> /* The function find_a finds 0 < N < 2^GMP_NUMB_BITS such that there
> >> exists 0 < |D| < 2^GMP_NUMB_BITS, and N == D * C mod
> >> 2^(2*GMP_NUMB_BITS). In the reference article, D was computed along with
> >> N, but it is better to compute D separately as D <-- N / C mod
> >> 2^(GMP_NUMB_BITS + 1), treating the result as a twos' complement signed
> >> integer.
> >>
> >>   Initialize N1 to C mod 2^(2*GMP_NUMB_BITS).  According to the
> >> reference article, N2 should be initialized to 2^(2*GMP_NUMB_BITS), but
> >> we use 2^(2*GMP_NUMB_BITS) - N1 to start the calculations within double
> >> precision.  If N2 > N1 initially, the first iteration of the while loop
> >> will swap them.  In all other situations, N1 >= N2 is maintained.  */
> >>
> >> #if HAVE_NATIVE_mpn_gcd_finda
> >> #define find_a(cp)  mpn_gcd_finda (cp)
> >>
> >> #else
> >> static
> >> #if ! defined (__i386__)
> >> inline                          /* don't inline this for the x86 */
> >> #endif
> >> mp_limb_t
> >> find_a (mp_srcptr cp)
> >> {
> >>  unsigned long int leading_zero_bits = 0;
> >>
> >>  mp_limb_t n1_l = cp[0];       /* N1 == n1_h * 2^GMP_NUMB_BITS + n1_l. 
> >> */ mp_limb_t n1_h = cp[1];
> >>
> >>  mp_limb_t n2_l = (-n1_l & GMP_NUMB_MASK);     /* N2 == n2_h *
> >> 2^GMP_NUMB_BITS + n2_l.  */ mp_limb_t n2_h = (~n1_h & GMP_NUMB_MASK);
> >>
> >>  /* Main loop.  */
> >>  while (n2_h != 0)             /* While N2 >= 2^GMP_NUMB_BITS.  */
> >>    {
> >>      /* N1 <-- N1 % N2.  */
> >>      if (((GMP_NUMB_HIGHBIT >> leading_zero_bits) & n2_h) == 0)
> >>        {
> >>          unsigned long int i;
> >>          count_leading_zeros (i, n2_h);
> >>          i -= GMP_NAIL_BITS;
> >>          i -= leading_zero_bits;
> >>          leading_zero_bits += i;
> >>          n2_h = ((n2_h << i) & GMP_NUMB_MASK) | (n2_l >> (GMP_NUMB_BITS
> >> - i)); n2_l = (n2_l << i) & GMP_NUMB_MASK;
> >>          do
> >>            {
> >>              if (n1_h > n2_h || (n1_h == n2_h && n1_l >= n2_l))
> >>                {
> >>                  n1_h -= n2_h + (n1_l < n2_l);
> >>                  n1_l = (n1_l - n2_l) & GMP_NUMB_MASK;
> >>                }
> >>              n2_l = (n2_l >> 1) | ((n2_h << (GMP_NUMB_BITS - 1)) &
> >> GMP_NUMB_MASK); n2_h >>= 1;
> >>              i -= 1;
> >>            }
> >>          while (i != 0);
> >>        }
> >>      if (n1_h > n2_h || (n1_h == n2_h && n1_l >= n2_l))
> >>        {
> >>          n1_h -= n2_h + (n1_l < n2_l);
> >>          n1_l = (n1_l - n2_l) & GMP_NUMB_MASK;
> >>        }
> >>
> >>      MP_LIMB_T_SWAP (n1_h, n2_h);
> >>      MP_LIMB_T_SWAP (n1_l, n2_l);
> >>    }
> >>
> >>  return n2_l;
> >> }
> >> #endif
> >>
> >>
> >> mp_size_t
> >> mpn_basic_gcd (mp_ptr gp, mp_ptr up, mp_size_t usize, mp_ptr vp,
> >> mp_size_t vsize) {
> >>  mp_ptr orig_vp = vp;
> >>  mp_size_t orig_vsize = vsize;
> >>  int binary_gcd_ctr;           /* Number of times binary gcd will
> >> execute.  */ mp_size_t scratch;
> >>  mp_ptr tp;
> >>  TMP_DECL;
> >>
> >>  ASSERT (usize >= 1);
> >>  ASSERT (vsize >= 1);
> >>  ASSERT (usize >= vsize);
> >>  ASSERT (vp[0] & 1);
> >>  ASSERT (up[usize - 1] != 0);
> >>  ASSERT (vp[vsize - 1] != 0);
> >> #if WANT_ASSERT
> >>  if (usize == vsize)
> >>    {
> >>      int  uzeros, vzeros;
> >>      count_leading_zeros (uzeros, up[usize - 1]);
> >>      count_leading_zeros (vzeros, vp[vsize - 1]);
> >>      ASSERT (uzeros <= vzeros);
> >>    }
> >> #endif
> >>  ASSERT (! MPN_OVERLAP_P (up, usize, vp, vsize));
> >>  ASSERT (MPN_SAME_OR_SEPARATE2_P (gp, vsize, up, usize));
> >>  ASSERT (MPN_SAME_OR_SEPARATE2_P (gp, vsize, vp, vsize));
> >>
> >>  TMP_MARK;
> >>
> >>  /* Use accelerated algorithm if vsize is over GCD_ACCEL_THRESHOLD.
> >>     Two EXTRA limbs for U and V are required for kary reduction.  */
> >>  if (vsize >= GCD_ACCEL_THRESHOLD)
> >>    {
> >>      unsigned long int vbitsize, d;
> >>      mp_ptr orig_up = up;
> >>      mp_size_t orig_usize = usize;
> >>      mp_ptr anchor_up = (mp_ptr) TMP_ALLOC ((usize + 2) *
> >> BYTES_PER_MP_LIMB);
> >>
> >>      MPN_COPY (anchor_up, orig_up, usize);
> >>      up = anchor_up;
> >>
> >>      count_leading_zeros (d, up[usize - 1]);
> >>      d -= GMP_NAIL_BITS;
> >>      d = usize * GMP_NUMB_BITS - d;
> >>      count_leading_zeros (vbitsize, vp[vsize - 1]);
> >>      vbitsize -= GMP_NAIL_BITS;
> >>      vbitsize = vsize * GMP_NUMB_BITS - vbitsize;
> >>      ASSERT (d >= vbitsize);
> >>      d = d - vbitsize + 1;
> >>
> >>      /* Use bmod reduction to quickly discover whether V divides U.  */
> >>      up[usize++] = 0;                          /* Insert leading zero. 
> >> */ mpn_bdivmod (up, up, usize, vp, vsize, d);
> >>
> >>      /* Now skip U/V mod 2^d and any low zero limbs.  */
> >>      d /= GMP_NUMB_BITS, up += d, usize -= d;
> >>      while (usize != 0 && up[0] == 0)
> >>        up++, usize--;
> >>
> >>      if (usize == 0)                           /* GCD == ORIG_V.  */
> >>        goto done;
> >>
> >>      vp = (mp_ptr) TMP_ALLOC ((vsize + 2) * BYTES_PER_MP_LIMB);
> >>      MPN_COPY (vp, orig_vp, vsize);
> >>
> >>      do                                        /* Main loop.  */
> >>        {
> >>          /* mpn_com_n can't be used here because anchor_up and up may
> >>             partially overlap */
> >>          if ((up[usize - 1] & GMP_NUMB_HIGHBIT) != 0)  /* U < 0; take
> >> twos' compl. */ {
> >>              mp_size_t i;
> >>              anchor_up[0] = -up[0] & GMP_NUMB_MASK;
> >>              for (i = 1; i < usize; i++)
> >>                anchor_up[i] = (~up[i] & GMP_NUMB_MASK);
> >>              up = anchor_up;
> >>            }
> >>
> >>          MPN_NORMALIZE_NOT_ZERO (up, usize);
> >>
> >>          if ((up[0] & 1) == 0)                 /* Result even; remove
> >> twos. */ {
> >>              unsigned int r;
> >>              count_trailing_zeros (r, up[0]);
> >>              mpn_rshift (anchor_up, up, usize, r);
> >>              usize -= (anchor_up[usize - 1] == 0);
> >>            }
> >>          else if (anchor_up != up)
> >>            MPN_COPY_INCR (anchor_up, up, usize);
> >>
> >>          MPN_PTR_SWAP (anchor_up,usize, vp,vsize);
> >>          up = anchor_up;
> >>
> >>          if (vsize <= 2)               /* Kary can't handle < 2 limbs
> >> and  */ break;                      /* isn't efficient for == 2 limbs. 
> >> */
> >>
> >>          d = vbitsize;
> >>          count_leading_zeros (vbitsize, vp[vsize - 1]);
> >>          vbitsize -= GMP_NAIL_BITS;
> >>          vbitsize = vsize * GMP_NUMB_BITS - vbitsize;
> >>          d = d - vbitsize + 1;
> >>
> >>          if (d > BMOD_THRESHOLD)       /* Bmod reduction.  */
> >>            {
> >>              up[usize++] = 0;
> >>              mpn_bdivmod (up, up, usize, vp, vsize, d);
> >>              d /= GMP_NUMB_BITS, up += d, usize -= d;
> >>            }
> >>          else                          /* Kary reduction.  */
> >>            {
> >>              mp_limb_t bp[2], cp[2];
> >>
> >>              /* C <-- V/U mod 2^(2*GMP_NUMB_BITS).  */
> >>              {
> >>                mp_limb_t u_inv, hi, lo;
> >>                modlimb_invert (u_inv, up[0]);
> >>                cp[0] = (vp[0] * u_inv) & GMP_NUMB_MASK;
> >>                umul_ppmm (hi, lo, cp[0], up[0] << GMP_NAIL_BITS);
> >>                lo >>= GMP_NAIL_BITS;
> >>                cp[1] = (vp[1] - hi - cp[0] * up[1]) * u_inv &
> >> GMP_NUMB_MASK; }
> >>
> >>              /* U <-- find_a (C)  *  U.  */
> >>              up[usize] = mpn_mul_1 (up, up, usize, find_a (cp));
> >>              usize++;
> >>
> >>              /* B <-- A/C == U/V mod 2^(GMP_NUMB_BITS + 1).
> >>                  bp[0] <-- U/V mod 2^GMP_NUMB_BITS and
> >>                  bp[1] <-- ( (U - bp[0] * V)/2^GMP_NUMB_BITS ) / V mod 2
> >>
> >>                  Like V/U above, but simplified because only the low bit
> >> of bp[1] is wanted. */
> >>              {
> >>                mp_limb_t  v_inv, hi, lo;
> >>                modlimb_invert (v_inv, vp[0]);
> >>                bp[0] = (up[0] * v_inv) & GMP_NUMB_MASK;
> >>                umul_ppmm (hi, lo, bp[0], vp[0] << GMP_NAIL_BITS);
> >>                lo >>= GMP_NAIL_BITS;
> >>                bp[1] = (up[1] + hi + (bp[0] & vp[1])) & 1;
> >>              }
> >>
> >>              up[usize++] = 0;
> >>              if (bp[1] != 0)   /* B < 0: U <-- U + (-B)  * V.  */
> >>                {
> >>                   mp_limb_t c = mpn_addmul_1 (up, vp, vsize, -bp[0] &
> >> GMP_NUMB_MASK); mpn_add_1 (up + vsize, up + vsize, usize - vsize, c); }
> >>              else              /* B >= 0:  U <-- U - B * V.  */
> >>                {
> >>                  mp_limb_t b = mpn_submul_1 (up, vp, vsize, bp[0]);
> >>                  mpn_sub_1 (up + vsize, up + vsize, usize - vsize, b);
> >>                }
> >>
> >>              up += 2, usize -= 2;  /* At least two low limbs are zero. 
> >> */ }
> >>
> >>          /* Must remove low zero limbs before complementing.  */
> >>          while (usize != 0 && up[0] == 0)
> >>            up++, usize--;
> >>        }
> >>      while (usize != 0);
> >>
> >>      /* Compute GCD (ORIG_V, GCD (ORIG_U, V)).  Binary will execute
> >> twice.  */ up = orig_up, usize = orig_usize;
> >>      binary_gcd_ctr = 2;
> >>    }
> >>  else
> >>    binary_gcd_ctr = 1;
> >>
> >>  scratch = MPN_NGCD_LEHMER_ITCH (vsize);
> >>  if (usize + 1 > scratch)
> >>    scratch = usize + 1;
> >>
> >>  tp = TMP_ALLOC_LIMBS (scratch);
> >>
> >>  /* Finish up with the binary algorithm.  Executes once or twice.  */
> >>  for ( ; binary_gcd_ctr--; up = orig_vp, usize = orig_vsize)
> >>    {
> >> #if 1
> >>      if (usize > vsize)
> >>        {
> >>          /* FIXME: Could use mpn_bdivmod. */
> >>          mp_size_t rsize;
> >>
> >>          mpn_tdiv_qr (tp + vsize, tp, 0, up, usize, vp, vsize);
> >>          rsize = vsize;
> >>          MPN_NORMALIZE (tp, rsize);
> >>          if (rsize == 0)
> >>            continue;
> >>
> >>          MPN_COPY (up, tp, vsize);
> >>        }
> >>      vsize = mpn_ngcd_lehmer (vp, up, vp, vsize, tp);
> >> #else
> >>      if (usize > 2)            /* First make U close to V in size.  */
> >>        {
> >>          unsigned long int vbitsize, d;
> >>          count_leading_zeros (d, up[usize - 1]);
> >>          d -= GMP_NAIL_BITS;
> >>          d = usize * GMP_NUMB_BITS - d;
> >>          count_leading_zeros (vbitsize, vp[vsize - 1]);
> >>          vbitsize -= GMP_NAIL_BITS;
> >>          vbitsize = vsize * GMP_NUMB_BITS - vbitsize;
> >>          d = d - vbitsize - 1;
> >>          if (d != -(unsigned long int)1 && d > 2)
> >>            {
> >>              mpn_bdivmod (up, up, usize, vp, vsize, d);  /* Result > 0. 
> >> */ d /= (unsigned long int)GMP_NUMB_BITS, up += d, usize -= d; }
> >>        }
> >>
> >>      /* Start binary GCD.  */
> >>      do
> >>        {
> >>          mp_size_t zeros;
> >>
> >>          /* Make sure U is odd.  */
> >>          MPN_NORMALIZE (up, usize);
> >>          while (up[0] == 0)
> >>            up += 1, usize -= 1;
> >>          if ((up[0] & 1) == 0)
> >>            {
> >>              unsigned int r;
> >>              count_trailing_zeros (r, up[0]);
> >>              mpn_rshift (up, up, usize, r);
> >>              usize -= (up[usize - 1] == 0);
> >>            }
> >>
> >>          /* Keep usize >= vsize.  */
> >>          if (usize < vsize)
> >>            MPN_PTR_SWAP (up, usize, vp, vsize);
> >>
> >>          if (usize <= 2)                               /* Double
> >> precision. */ {
> >>              if (vsize == 1)
> >>                vp[0] = mpn_gcd_1 (up, usize, vp[0]);
> >>              else
> >>                vsize = gcd_2 (vp, up);
> >>              break;                                    /* Binary GCD
> >> done.  */ }
> >>
> >>          /* Count number of low zero limbs of U - V.  */
> >>          for (zeros = 0; up[zeros] == vp[zeros] && ++zeros != vsize; )
> >>            continue;
> >>
> >>          /* If U < V, swap U and V; in any case, subtract V from U.  */
> >>          if (zeros == vsize)                           /* Subtract done.
> >>  */ up += zeros, usize -= zeros;
> >>          else if (usize == vsize)
> >>            {
> >>              mp_size_t size = vsize;
> >>              do
> >>                size--;
> >>              while (up[size] == vp[size]);
> >>              if (up[size] < vp[size])                  /* usize ==
> >> vsize.  */ MP_PTR_SWAP (up, vp);
> >>              up += zeros, usize = size + 1 - zeros;
> >>              mpn_sub_n (up, up, vp + zeros, usize);
> >>            }
> >>          else
> >>            {
> >>              mp_size_t size = vsize - zeros;
> >>              up += zeros, usize -= zeros;
> >>              if (mpn_sub_n (up, up, vp + zeros, size))
> >>                {
> >>                  while (up[size] == 0)                 /* Propagate
> >> borrow. */ up[size++] = -(mp_limb_t)1;
> >>                  up[size] -= 1;
> >>                }
> >>            }
> >>        }
> >>      while (usize);                                    /* End binary
> >> GCD.  */ #endif
> >>    }
> >>
> >> done:
> >>  if (vp != gp)
> >>    MPN_COPY_INCR (gp, vp, vsize);
> >>  TMP_FREE;
> >>  return vsize;
> >> }
> >>
> >>
> >>
> >> /* ******************************************************************
> >>  *     END of original GMP mpn_gcd
> >>  * *****************************************************************/
> >>
> >>
> >>
> >>
> >>
> >> /* For input of size n, matrix elements are of size at most ceil(n/2)
> >>   - 1, but we need one limb extra. */
> >>
> >> void
> >> mpn_ngcd_matrix_init (struct ngcd_matrix *M, mp_size_t n, mp_ptr p)
> >> {
> >>  mp_size_t s = (n+1)/2;
> >>  M->alloc = s;
> >>  M->n = 1;
> >>  MPN_ZERO (p, 4 * s);
> >>  M->p[0][0] = p;
> >>  M->p[0][1] = p + s;
> >>  M->p[1][0] = p + 2 * s;
> >>  M->p[1][1] = p + 3 * s;
> >>  M->tp = p + 4*s;
> >>
> >>  M->p[0][0][0] = M->p[1][1][0] = 1;
> >> }
> >>
> >> #define NHGCD_BASE_ITCH MPN_NGCD_STEP_ITCH
> >>
> >> /* Reduces a,b until |a-b| fits in n/2 + 1 limbs. Constructs matrix M
> >>   with elements of size at most (n+1)/2 - 1. Returns new size of a,
> >>   b, or zero if no reduction is possible. */
> >> static mp_size_t
> >> nhgcd_base (mp_ptr ap, mp_ptr bp, mp_size_t n,
> >>            struct ngcd_matrix *M, mp_ptr tp)
> >> {
> >>  mp_size_t s = n/2 + 1;
> >>  mp_size_t nn;
> >>
> >>  ASSERT (n > s);
> >>  ASSERT (ap[n-1] > 0 || bp[n-1] > 0);
> >>
> >>  nn = mpn_ngcd_step (n, ap, bp, s, M, tp);
> >>  if (!nn)
> >>    return 0;
> >>
> >>  for (;;)
> >>    {
> >>      n = nn;
> >>      ASSERT (n > s);
> >>      nn = mpn_ngcd_step (n, ap, bp, s, M, tp);
> >>      if (!nn )
> >>        return n;
> >>    }
> >> }
> >>
> >> /* Size analysis for nhgcd:
> >>
> >>   For the recursive calls, we have n1 <= ceil(n / 2). Then the
> >>   storage need is determined by the storage for the recursive call
> >>   computing M1, and ngcd_matrix_adjust and ngcd_matrix_mul calls that
> >> use M1 (after this, the storage needed for M1 can be recycled).
> >>
> >>   Let S(r) denote the required storage. For M1 we need 5 * ceil(n1/2)
> >>   = 5 * ceil(n/4), and for the ngcd_matrix_adjust call, we need n + 2.
> >> In total, 5 * ceil(n/4) + n + 2 <= 9 ceil(n/4) + 2.
> >>
> >>   For the recursive call, we need S(n1) = S(ceil(n/2)).
> >>
> >>   S(n) <= 9*ceil(n/4) + 2 + S(ceil(n/2))
> >>        <= 9*(ceil(n/4) + ... + ceil(n/2^(1+k))) + 2k + S(ceil(n/2^k))
> >>        <= 9*(2 ceil(n/4) + k) + 2k + S(n/2^k)
> >>        <= 18 ceil(n/4) + 11k + S(n/2^k)
> >>
> >> */
> >>
> >> mp_size_t
> >> mpn_nhgcd_itch (mp_size_t n)
> >> {
> >>  unsigned k;
> >>  mp_size_t nn;
> >>
> >>  /* Inefficient way to almost compute
> >>     log_2(n/NHGCD_BASE_THRESHOLD) */
> >>  for (k = 0, nn = n;
> >>       ABOVE_THRESHOLD (nn, NHGCD_THRESHOLD);
> >>       nn = (nn + 1) / 2)
> >>    k++;
> >>
> >>  if (k == 0)
> >>    return NHGCD_BASE_ITCH (n);
> >>
> >>  return 18 * ((n+3) / 4) + 11 * k
> >>    + NHGCD_BASE_ITCH (NHGCD_THRESHOLD);
> >> }
> >>
> >> /* Reduces a,b until |a-b| fits in n/2 + 1 limbs. Constructs matrix M
> >>   with elements of size at most (n+1)/2 - 1. Returns new size of a,
> >>   b, or zero if no reduction is possible. */
> >>
> >> mp_size_t
> >> mpn_nhgcd (mp_ptr ap, mp_ptr bp, mp_size_t n,
> >>           struct ngcd_matrix *M, mp_ptr tp)
> >> {
> >>  mp_size_t s = n/2 + 1;
> >>  mp_size_t n2 = (3*n)/4 + 1;
> >>
> >>  mp_size_t p, nn;
> >>  unsigned count;
> >>  int success = 0;
> >>
> >>  ASSERT (n > s);
> >>  ASSERT ((ap[n-1] | bp[n-1]) > 0);
> >>
> >>  ASSERT ((n+1)/2 - 1 < M->alloc);
> >>
> >>  if (BELOW_THRESHOLD (n, NHGCD_THRESHOLD))
> >>    return nhgcd_base (ap, bp, n, M, tp);
> >>
> >>  p = n/2;
> >>  nn = mpn_nhgcd (ap + p, bp + p, n - p, M, tp);
> >>  if (nn > 0)
> >>    {
> >>      /* Needs 2*(p + M->n) <= 2*(floor(n/2) + ceil(n/2) - 1)
> >>         = 2 (n - 1) */
> >>      n = mpn_ngcd_matrix_adjust (M, p + nn, ap, bp, p, tp);
> >>      success = 1;
> >>    }
> >>  count = 0;
> >>  while (n > n2)
> >>    {
> >>      count++;
> >>      /* Needs n + 1 storage */
> >>      nn = mpn_ngcd_step (n, ap, bp, s, M, tp);
> >>      if (!nn)
> >>        return success ? n : 0;
> >>      n = nn;
> >>      success = 1;
> >>    }
> >>
> >>  if (n > s + 2)
> >>    {
> >>      struct ngcd_matrix M1;
> >>      mp_size_t scratch;
> >>
> >>      p = 2*s - n + 1;
> >>      scratch = MPN_NGCD_MATRIX_INIT_ITCH (n-p);
> >>
> >>      mpn_ngcd_matrix_init(&M1, n - p, tp);
> >>      nn = mpn_nhgcd (ap + p, bp + p, n - p, &M1, tp + scratch);
> >>      if (nn > 0)
> >>        {
> >>          /* Needs 2 (p + M->n) <= 2 (2*s - n2 + 1 + n2 - s - 1)
> >>             = 2*s <= 2*(floor(n/2) + 1) <= n + 2. */
> >>          n = mpn_ngcd_matrix_adjust (&M1, p + nn, ap, bp, p, tp +
> >> scratch); /* Needs M->n <= n2 - s - 1 < n/4 */
> >>          mpn_ngcd_matrix_mul (M, &M1, tp + scratch);
> >>          success = 1;
> >>        }
> >>    }
> >>
> >>  /* FIXME: This really is the base case */
> >>  for (count = 0;; count++)
> >>    {
> >>      /* Needs s+3 < n */
> >>      nn = mpn_ngcd_step (n, ap, bp, s, M, tp);
> >>      if (!nn)
> >>        return success ? n : 0;
> >>
> >>      n = nn;
> >>      success = 1;
> >>    }
> >> }
> >>
> >> #define EVEN_P(x) (((x) & 1) == 0)
> >>
> >> mp_size_t
> >> mpn_gcd (mp_ptr gp, mp_ptr ap, mp_size_t an, mp_ptr bp, mp_size_t n)
> >> {
> >>  mp_size_t init_scratch;
> >>  mp_size_t scratch;
> >>  mp_ptr tp;
> >>  TMP_DECL;
> >>
> >>  ASSERT (an >= n);
> >>
> >>  if (BELOW_THRESHOLD (n, NGCD_THRESHOLD))
> >>    return mpn_basic_gcd (gp, ap, an, bp, n);
> >>
> >>  init_scratch = MPN_NGCD_MATRIX_INIT_ITCH ((n+1)/2);
> >>  scratch = mpn_nhgcd_itch ((n+1)/2);
> >>
> >>  /* Space needed for mpn_ngcd_matrix_adjust */
> >>  if (scratch < 2*n)
> >>    scratch = 2*n;
> >>
> >>  TMP_MARK;
> >>
> >>  if (an + 1 > init_scratch + scratch)
> >>    tp = TMP_ALLOC_LIMBS (an + 1);
> >>  else
> >>    tp = TMP_ALLOC_LIMBS (init_scratch + scratch);
> >>
> >>  if (an > n)
> >>    {
> >>      mp_ptr rp = tp;
> >>      mp_ptr qp = rp + n;
> >>
> >>      mpn_tdiv_qr (qp, rp, 0, ap, an, bp, n);
> >>      MPN_COPY (ap, rp, n);
> >>      an = n;
> >>      MPN_NORMALIZE (ap, an);
> >>      if (an == 0)
> >>        {
> >>          MPN_COPY (gp, bp, n);
> >>          TMP_FREE;
> >>          return n;
> >>        }
> >>    }
> >>
> >>  while (ABOVE_THRESHOLD (n, NGCD_THRESHOLD))
> >>    {
> >>      struct ngcd_matrix M;
> >>      mp_size_t p = n/2;
> >>      mp_size_t nn;
> >>
> >>      mpn_ngcd_matrix_init (&M, n - p, tp);
> >>      nn = mpn_nhgcd (ap + p, bp + p, n - p, &M, tp + init_scratch);
> >>      if (nn > 0)
> >>        /* Needs 2*(p + M->n) <= 2*(floor(n/2) + ceil(n/2) - 1)
> >>           = 2(n-1) */
> >>        n = mpn_ngcd_matrix_adjust (&M, p + nn, ap, bp, p, tp +
> >> init_scratch);
> >>
> >>      else
> >>        {
> >>          mp_size_t gn;
> >>          n = mpn_ngcd_subdiv_step (gp, &gn, ap, bp, n, tp);
> >>          if (n == 0)
> >>            {
> >>              TMP_FREE;
> >>              return gn;
> >>            }
> >>        }
> >>    }
> >>
> >>  ASSERT (ap[n-1] > 0 || bp[n-1] > 0);
> >> #if 0
> >>  /* FIXME: We may want to use lehmer on some systems. */
> >>  n = mpn_ngcd_lehmer (gp, ap, bp, n, tp);
> >>
> >>  TMP_FREE;
> >>  return n;
> >> #endif
> >>
> >>  if (ap[n-1] < bp[n-1])
> >>    MP_PTR_SWAP (ap, bp);
> >>
> >>  an = n;
> >>  MPN_NORMALIZE (bp, n);
> >>
> >>  if (n == 0)
> >>    {
> >>      MPN_COPY (gp, ap, an);
> >>      TMP_FREE;
> >>      return an;
> >>    }
> >>
> >>  if (EVEN_P (bp[0]))
> >>    {
> >>      /* Then a must be odd (since the calling convention implies that
> >>         there's no common factor of 2) */
> >>      ASSERT (!EVEN_P (ap[0]));
> >>
> >>      while (bp[0] == 0)
> >>        {
> >>          bp++;
> >>          n--;
> >>        }
> >>
> >>      if (EVEN_P(bp[0]))
> >>        {
> >>          int count;
> >>          count_trailing_zeros (count, bp[0]);
> >>          ASSERT_NOCARRY (mpn_rshift (bp, bp, n, count));
> >>          n -= (bp[n-1] == 0);
> >>        }
> >>    }
> >>
> >>  TMP_FREE;
> >>  return mpn_basic_gcd (gp, ap, an, bp, n);
> >> }
> >>
> >> /* Schönhage's 1987 algorithm, reorganized into hgcd form */
> >>
> >> #include <stdio.h>  /* for NULL */
> >>
> >> #include "gmp.h"
> >> #include "gmp-impl.h"
> >> #include "longlong.h"
> >>
> >>
> >>
> >>
> >>
> >>
> >> /* For input of size n, matrix elements are of size at most ceil(n/2)
> >>   - 1, but we need one limb extra. */
> >>
> >> void
> >> mpn_ngcd_matrix_init (struct ngcd_matrix *M, mp_size_t n, mp_ptr p);
> >>
> >> #define NHGCD_BASE_ITCH MPN_NGCD_STEP_ITCH
> >>
> >> /* Reduces a,b until |a-b| fits in n/2 + 1 limbs. Constructs matrix M
> >>   with elements of size at most (n+1)/2 - 1. Returns new size of a,
> >>   b, or zero if no reduction is possible. */
> >> static mp_size_t
> >> nhgcd_base (mp_ptr ap, mp_ptr bp, mp_size_t n,
> >>            struct ngcd_matrix *M, mp_ptr tp);
> >>
> >> /* Size analysis for nhgcd:
> >>
> >>   For the recursive calls, we have n1 <= ceil(n / 2). Then the
> >>   storage need is determined by the storage for the recursive call
> >>   computing M1, and ngcd_matrix_adjust and ngcd_matrix_mul calls that
> >> use M1 (after this, the storage needed for M1 can be recycled).
> >>
> >>   Let S(r) denote the required storage. For M1 we need 5 * ceil(n1/2)
> >>   = 5 * ceil(n/4), and for the ngcd_matrix_adjust call, we need n + 2.
> >> In total, 5 * ceil(n/4) + n + 2 <= 9 ceil(n/4) + 2.
> >>
> >>   For the recursive call, we need S(n1) = S(ceil(n/2)).
> >>
> >>   S(n) <= 9*ceil(n/4) + 2 + S(ceil(n/2))
> >>        <= 9*(ceil(n/4) + ... + ceil(n/2^(1+k))) + 2k + S(ceil(n/2^k))
> >>        <= 9*(2 ceil(n/4) + k) + 2k + S(n/2^k)
> >>        <= 18 ceil(n/4) + 11k + S(n/2^k)
> >>
> >> */
> >>
> >> mp_size_t
> >> mpn_nhgcd_itch (mp_size_t n);
> >>
> >>
> >> /* Reduces a,b until |a-b| fits in n/2 + 1 limbs. Constructs matrix M
> >>   with elements of size at most (n+1)/2 - 1. Returns new size of a,
> >>   b, or zero if no reduction is possible. */
> >>
> >> mp_size_t
> >> mpn_nhgcd (mp_ptr ap, mp_ptr bp, mp_size_t n,
> >>           struct ngcd_matrix *M, mp_ptr tp);
> >>
> >>
> >> #define EVEN_P(x) (((x) & 1) == 0)
> >>
> >> mp_size_t
> >> mpn_ngcd (mp_ptr gp, mp_ptr ap, mp_size_t an, mp_ptr bp, mp_size_t n)
> >> {
> >>  mp_size_t init_scratch;
> >>  mp_size_t scratch;
> >>  mp_ptr tp;
> >>  TMP_DECL;
> >>
> >>  ASSERT (an >= n);
> >>
> >>  if (BELOW_THRESHOLD (n, NGCD_THRESHOLD))
> >>    return mpn_basic_gcd (gp, ap, an, bp, n);
> >>
> >>  init_scratch = MPN_NGCD_MATRIX_INIT_ITCH ((n+1)/2);
> >>  scratch = mpn_nhgcd_itch ((n+1)/2);
> >>
> >>  /* Space needed for mpn_ngcd_matrix_adjust */
> >>  if (scratch < 2*n)
> >>    scratch = 2*n;
> >>
> >>  TMP_MARK;
> >>
> >>  if (an + 1 > init_scratch + scratch)
> >>    tp = TMP_ALLOC_LIMBS (an + 1);
> >>  else
> >>    tp = TMP_ALLOC_LIMBS (init_scratch + scratch);
> >>
> >>  if (an > n)
> >>    {
> >>      mp_ptr rp = tp;
> >>      mp_ptr qp = rp + n;
> >>
> >>      mpn_tdiv_qr (qp, rp, 0, ap, an, bp, n);
> >>      MPN_COPY (ap, rp, n);
> >>      an = n;
> >>      MPN_NORMALIZE (ap, an);
> >>      if (an == 0)
> >>        {
> >>          MPN_COPY (gp, bp, n);
> >>          TMP_FREE;
> >>          return n;
> >>        }
> >>    }
> >>
> >>  while (ABOVE_THRESHOLD (n, NGCD_THRESHOLD))
> >>    {
> >>      struct ngcd_matrix M;
> >>      mp_size_t p = n/2;
> >>      mp_size_t nn;
> >>
> >>      mpn_ngcd_matrix_init (&M, n - p, tp);
> >>      nn = mpn_nhgcd (ap + p, bp + p, n - p, &M, tp + init_scratch);
> >>      if (nn > 0)
> >>        /* Needs 2*(p + M->n) <= 2*(floor(n/2) + ceil(n/2) - 1)
> >>           = 2(n-1) */
> >>        n = mpn_ngcd_matrix_adjust (&M, p + nn, ap, bp, p, tp +
> >> init_scratch);
> >>
> >>      else
> >>        {
> >>          mp_size_t gn;
> >>          n = mpn_ngcd_subdiv_step (gp, &gn, ap, bp, n, tp);
> >>          if (n == 0)
> >>            {
> >>              TMP_FREE;
> >>              return gn;
> >>            }
> >>        }
> >>    }
> >>
> >>  ASSERT (ap[n-1] > 0 || bp[n-1] > 0);
> >> #if 0
> >>  /* FIXME: We may want to use lehmer on some systems. */
> >>  n = mpn_ngcd_lehmer (gp, ap, bp, n, tp);
> >>
> >>  TMP_FREE;
> >>  return n;
> >> #endif
> >>
> >>  if (ap[n-1] < bp[n-1])
> >>    MP_PTR_SWAP (ap, bp);
> >>
> >>  an = n;
> >>  MPN_NORMALIZE (bp, n);
> >>
> >>  if (n == 0)
> >>    {
> >>      MPN_COPY (gp, ap, an);
> >>      TMP_FREE;
> >>      return an;
> >>    }
> >>
> >>  if (EVEN_P (bp[0]))
> >>    {
> >>      /* Then a must be odd (since the calling convention implies that
> >>         there's no common factor of 2) */
> >>      ASSERT (!EVEN_P (ap[0]));
> >>
> >>      while (bp[0] == 0)
> >>        {
> >>          bp++;
> >>          n--;
> >>        }
> >>
> >>      if (EVEN_P(bp[0]))
> >>        {
> >>          int count;
> >>          count_trailing_zeros (count, bp[0]);
> >>          ASSERT_NOCARRY (mpn_rshift (bp, bp, n, count));
> >>          n -= (bp[n-1] == 0);
> >>        }
> >>    }
> >>
> >>  TMP_FREE;
> >>  return mpn_basic_gcd (gp, ap, an, bp, n);
> >> }
>
> 


--~--~---------~--~----~------------~-------~--~----~
You received this message because you are subscribed to the Google Groups 
"mpir-devel" group.
To post to this group, send email to mpir-devel@googlegroups.com
To unsubscribe from this group, send email to 
mpir-devel+unsubscr...@googlegroups.com
For more options, visit this group at 
http://groups.google.com/group/mpir-devel?hl=en
-~----------~----~----~----~------~----~------~--~---

Reply via email to