Oi Pessoal, Achei a discussão interessante e gostaria de opinar, mesmo ela não sendo própria desta lista.
Acho que o problema não está na questão, mas sim na maneira como abordamos o assunto probabilidade no E.M. Tudo que foi falado é bastante pertinente se pensarmos no rigor matemático, mas os livros didáticos estão recheados dessas questões "contextualizadas" que não aparecem em nenhum contexto do no nosso dia a dia. Trabalha-se fórmulas de movimentos uniforme, uniformemente variado, circular, pendular e vários outros e essas fórmulas são apenas modelos bem simples que muitas vezes passam longe do real. Mas acho que é uma introdução apenas. Assim como acontece com a probabilidade no E.M. Acho que o exemplo do dado foi perfeito. Dificilmente conseguiríamos alcançar valores condizentes com a teoria que trabalhamos em sala se pensarmos em um experimento com 20 lançamentos apenas. Mas isso não nos impede de trabalharmos essa teoria. O que acham? --- Em qui, 20/9/12, Bob Roy <bob...@globo.com> escreveu: De: Bob Roy <bob...@globo.com> Assunto: Re: [obm-l] probabilidade Para: obm-l@mat.puc-rio.br Data: Quinta-feira, 20 de Setembro de 2012, 20:47 Olá ,Um fato que todos tem que concordar , é que dificilmente alguém iria pensar em uma turma com infinitos alunos ; por isto avalio a questão imprópria para um exame de qualificação da Uerj !!!!!! . AbraçosBob Em 19 de setembro de 2012 20:37, Athos Couto <athos...@hotmail.com> escreveu: Pelo contexto que a questão foi aplicada e também por ser a única maneira de se resolver a questão, a análise que deve ser feita é a que se aprende no ensino médio:Probabilidade é igual ao número de vezes que o evento esperado ocorre, sobre o número de elementos do conjunto universo. Resumindo, nesse problema é como se considerássemos o número de pessoas que fizeram a prova infinitos. Date: Wed, 19 Sep 2012 06:49:23 -0300 Subject: Re: [obm-l] probabilidade From: bob...@globo.com To: obm-l@mat.puc-rio.br Em 18 de setembro de 2012 23:00, Bernardo Freitas Paulo da Costa <bernardo...@gmail.com> escreveu: 2012/9/18 Athos Couto <athos...@hotmail.com>: > Provinha da UERJ? > Hehe... > > 20% acertaram porque sabiam. Ok > 80% chutaram. Eram 4 alternativas e uma certa. 25% de chance de acertar. Certo. > Portanto, 0,8*0,25 = 0,2 = 20% acertaram chutando. Hum, não sei não... marcar uma opção ao acaso não quer dizer que vai ser isso. Veja bem, se você lançar um dado 6 vezes, não vai sair necessariamente uma vez cada número. Claro que quanto mais vezes você jogar, mais as proporções de cada número vão ficar próximas de 1/6 (lei dos grandes números) mas haverá também uma pequena oscilação (proporcional à raiz quadrada do número de vezes que você jogar o dado; Teorema central do limite). O que você fez vale, portanto, para uma turma infinita (coitado do professor que corrigir as provas!). A quantidade de alunos que acertou já é ela mesma uma variável aleatória (Binomial, se eu não confundo os nomes), e a resposta depende (óbvio) de cada valor possível. Enfim, tudo depende do contexto do problema. Se você espera que o sujeito seja um mínimo crítico quanto à contextualização, esse tipo de enunciado "mundo real" é uma bela desgraça porque tá querendo dizer uma coisa ("os outros se dividem em 4 grupos de mesmo número e cada grupo marcou uma das respostas") por uma via errada ("marcar uma opção ao acaso entre as 4") e esperando que o sujeito "deduza" o que era para ser compreendido a partir de uma formulação que tem um sentido completamente diferente. Matemáticamente falando, inclusive. E isso é imperdoável. Contexto e "mundo real" é bom, mas adivinhação por "ah, isso é um problema de vestibular, então não pode estar querendo nada muito complicado, então na verdade o que ele quer dizer é tal coisa" é apenas um entrave na educação. -- Bernardo Freitas Paulo da Costa Olá , É justamente este problema que surgiu com os meus colegas . Pois fazendo com uma turma de 5 alunos e estudando os casos possíveis e favoráveis , a resposta não batia . Com uma turma de 10 alunos , analisando os casos possíveis e favoráveis também bate diferente a resposta E agora ? como devemos analisar esta questão ? Agradeço desde já Bob ========================================================================= Instruções para entrar na lista, sair da lista e usar a lista em http://www.mat.puc-rio.br/~obmlistas/obm-l.html =========================================================================