O máximo e o mínimo dessa função dependem do domínio onde ela está definida, por exemplo, se ela está definida em R-{0}, ela não tem máximo nem mínimo. Isso interpretando que a questão quer literalmente o valor máximo de f. Se interpretar que ela quer o valor de x para o qual f(x) é máximo ou mínimo, dá problema tb, pois se por exemplo vc coloca o domínio de f como o intervalo [n, infinito), nesse sentido máximo e mínimo vão ser ao menos n, que é um número arbitrário. Pra mim, a questão não tem solução.
Em sáb, 2 de nov de 2019 13:53, Luiz Antonio Rodrigues < rodrigue...@gmail.com> escreveu: > Olá, pessoal! > Bom dia! > Estou tentando resolver o seguinte problema: > > É dada a função: > > f(x)=(1/x)+sen(x) > > Pergunta-se: > > Em quais intervalos abaixo é garantido que encontremos o máximo e o mínimo > desta função? > > a) [-12;-3] > b) (-2;-1) > c) [-pi;pi] > d) [pi;2pi] > e) [5;+ infinito) > > Eu só consegui encontrar um ponto crítico em x=0. > Ele não é o único, pois vi isso num gráfico da função. > Não sei como resolver a equação f'(x)=0. > Acho que estamos lidando com números complexos. > Intervalos fechados fazem parte da solução? > Pergunto isso porque foi minha resposta, que está errada. > Estou confuso. > Alguém pode me ajudar? > Muito obrigado e um abraço! > Luiz > > > > -- > Esta mensagem foi verificada pelo sistema de antivírus e > acredita-se estar livre de perigo. -- Esta mensagem foi verificada pelo sistema de antiv�rus e acredita-se estar livre de perigo.