Obrigado, Wagner e Ponce:

Eu tinha pensado em algo na linha do que o Ponce escreveu, ainda que em
certos casos patológicos (pelo menos de piso...) o terceiro pé pode não
encontrar apoio: imagine um piso com um pico fino em algum lugar (p.ex. a
superfície gerada pela revolução de z = 1/(1+(x^2+y^2)^20) em torno do eixo
z). Neste caso, precisaríamos de uma cadeira bem pequena, ou pelo menos com
as pontas dos pés bem próximas umas das outras.

Mas, pelo que o Wagner escreveu, acho que ainda tem um teorema mais
profundo aí.

[]s,
Claudio.


On Mon, Jan 23, 2023 at 11:54 AM Rogerio Ponce <abrlw...@gmail.com> wrote:

> Ola' Claudio!
> Eu diria que as duas explicações estão erradas, pois não se depende de
> ter apenas um plano definido pelas pontas dos pés, visto que uma
> cadeira de 4 pés pode, perfeitamente, ter as pontas dos 4 pés em
> apenas um plano, e, ainda assim, ela não é necessariamente estável.
>
> Um explicação menos ruim é que, numa cadeira de 3 pés, sempre podemos
> apoiar quaisquer 2 pés num piso (mesmo irregular), e, em torno do eixo
> definido pelos 2 pés já apoiados, podemos girar a cadeira até que o
> terceiro pé encontre o piso, de modo que a cadeira fique totalmente
> apoiada.
> Já numa cadeira de 4 pés, é comum que um dos pés fique sem contato com
> o chão, permitindo que a cadeira oscile em torno do eixo definido
> pelos 2 pés vizinhos ao pé sem contato.
>
> []'s
> Rogerio Ponce
>
> On Sun, Jan 22, 2023 at 11:23 PM Claudio Buffara
> <claudio.buff...@gmail.com> wrote:
> >
> > Achei na internet duas explicações distintas para a estabilidade de uma
> cadeira (ou mesa ou banco) de 3 pés.
> > Aqui estão:
> > https://www.somatematica.com.br/curiosidades/c98.php
> >
> http://colegiofarroupilha.com.br/site/qual-cadeira-e-mais-firme-a-que-tem-tres-ou-quatro-pes/
> >
> > Qual das duas é a explicação correta?
> > Ou nenhuma das duas? E, nesse caso, qual a explicação?
> >
> > []s,
> > Claudio.
> >
> > --
> > Esta mensagem foi verificada pelo sistema de antivírus e
> > acredita-se estar livre de perigo.
>
> --
> Esta mensagem foi verificada pelo sistema de antivírus e
>  acredita-se estar livre de perigo.
>
>
> =========================================================================
> Instru�ões para entrar na lista, sair da lista e usar a lista em
> http://www.mat.puc-rio.br/~obmlistas/obm-l.html
> =========================================================================
>

-- 
Esta mensagem foi verificada pelo sistema de antiv�rus e
 acredita-se estar livre de perigo.

Responder a