I really do not have any idea about how difficult it would be to prove the atomic size issue, but that might actually become the main deciding measurement once completed. Either the size goes up directly with the excitation energy level or much faster as the square of that number. I bet this will be done soon if not for some complex issue.
Actually, I read that the excited hydrogen electron has several significantly different than spherical shapes according to Wiki and DGT referred to as Rydberg orbitals. It is not evident why they are not spherical, but that is what the authors claim. Dave -----Original Message----- From: Jeff Driscoll <jef...@gmail.com> To: vortex-l <vortex-l@eskimo.com> Sent: Sun, Jan 26, 2014 7:52 pm Subject: Re: [Vo]:Mills's theory I assume it is either impossible or almost impossible to measure the size of an excited hydrogen atom (i.e. n = 2, 3, 4 ...) - otherwise Mills would use that as proof, Though he shows through math why his size is correct - google "correspondence principle Randell Mills" On Sun, Jan 26, 2014 at 7:48 PM, David Roberson <dlrober...@aol.com> wrote: That is right Harry. Nobody cares about how big it can be. :-) Actually, the integer orbitspheres of Mills include all integer values which is like the quantum theory as I understand. Practical values are limited by how easy it is to ionize the big atoms at an integer value that is far less than infinity. This subject is one that surprises me in at least one major way. Mills predicts the atom size as being proportional to the integer directly while quantum physics suggests that it varies as the square. This is a huge difference and I can not imagine why the correct rule has not been clearly established. How could an atom be 10 times larger(int =10) in one calculation than the next without being obvious? Perhaps this discrepancy has been shown and I am not aware. Does anyone know of an accurate measurement for an excited hydrogen diameter that supports one of these theories? Dave -----Original Message----- From: H Veeder <hveeder...@gmail.com> To: vortex-l <vortex-l@eskimo.com> Sent: Sun, Jan 26, 2014 5:40 pm Subject: Re: [Vo]:Mills's theory While people debate how small a hydrogen atom can be, there seems to be no debate about how big a hydrogen atom can be. Harry On Sun, Jan 26, 2014 at 5:06 PM, David Roberson <dlrober...@aol.com> wrote: I guess that is what it boils down to Eric. I would much rather have the series continue indefinitely as I have been discussing. i.e. (1/2,1/3,...1/137,1/138...1/infinity) which would blend nicely with the other integer portion that we all assume is real. If the total series is found to be valid, then there is no special consideration needed for the 1/137 term. But, we must abide by natural laws and most times they do not care what we prefer. :( Dave -----Original Message----- From: Eric Walker <eric.wal...@gmail.com> To: vortex-l <vortex-l@eskimo.com> Sent: Sun, Jan 26, 2014 4:12 pm Subject: Re: [Vo]:Mills's theory On Sun, Jan 26, 2014 at 12:55 PM, James Bowery <jabow...@gmail.com> wrote: The theory is a photon like zitterbewegung model describing states that retain locality in phase space with circular cycles of a trapped photon representing the usual eigenstates. The Maxwell quanta hbar(c) becomes a classical angular momentum quanta in phase space with quantum number 137 attached. Ah, gotcha. Thank you. Hence also the electron "becoming a photon" as it approaches the lowest level. Now we have to decide whether we can live with a series { 1/2, 1/3, 1/4, ..., 1/136, alpha(N) }. (Or something like that.) Eric -- Jeff Driscoll 617-290-1998