A hydrogen atom H is an atom because the motion of the electron is bound to
the proton. If the electron's motion were not bound by the proton, the
electron and proton would not form an "atom" since the electron's motion
would allow it to escape the "potential well" of the proton.

In a classical mechanical system the orbital radius of a bound electron can
be arbitrarily large as long as the kinetic energy of the electron can be
arbitrarily small. In a quantum mechanical system if an electron has an
arbitrarily small kinetic energy then the uncertainty in its position
becomes arbitrarily large and that would increase the probability that the
electron could escape the potential well of the proton by "tunneling"
beyond it. Or is it impossible for a bound electron to free itself?

harry



On Sun, Jan 26, 2014 at 7:48 PM, David Roberson <dlrober...@aol.com> wrote:

> That is right Harry.  Nobody cares about how big it can be. :-)
>
> Actually, the integer orbitspheres of Mills include all integer values
> which is like the quantum theory as I understand.  Practical values are
> limited by how easy it is to ionize the big atoms at an integer value that
> is far less than infinity.
>
> This subject is one that surprises me in at least one major way.  Mills
> predicts the atom size as being proportional to the integer directly while
> quantum physics suggests that it varies as the square.  This is a huge
> difference and I can not imagine why the correct rule has not been clearly
> established.  How could an atom be 10 times larger(int =10) in one
> calculation than the next without being obvious?
>
> Perhaps this discrepancy has been shown and I am not aware.  Does anyone
> know of an accurate measurement for an excited hydrogen diameter that
> supports one of these theories?
>
> Dave
>
>
>
>  -----Original Message-----
> From: H Veeder <hveeder...@gmail.com>
> To: vortex-l <vortex-l@eskimo.com>
> Sent: Sun, Jan 26, 2014 5:40 pm
> Subject: Re: [Vo]:Mills's theory
>
>
>  While people debate how small a hydrogen atom can be, there seems to be
> no debate about how big a hydrogen atom can be.
>
>  Harry
>
>
> On Sun, Jan 26, 2014 at 5:06 PM, David Roberson <dlrober...@aol.com>wrote:
>
>> I guess that is what it boils down to Eric.  I would much rather have
>> the series continue indefinitely as I have been discussing.  i.e.
>> (1/2,1/3,...1/137,1/138...1/infinity)  which would blend nicely with the
>> other integer portion that we all assume is real.  If the total series is
>> found to be valid, then there is no special consideration needed for the
>> 1/137 term.
>>
>> But, we must abide by natural laws and most times they do not care what
>> we prefer. :(
>>
>> Dave
>>
>>
>>
>>  -----Original Message-----
>> From: Eric Walker <eric.wal...@gmail.com>
>> To: vortex-l <vortex-l@eskimo.com>
>> Sent: Sun, Jan 26, 2014 4:12 pm
>> Subject: Re: [Vo]:Mills's theory
>>
>>   On Sun, Jan 26, 2014 at 12:55 PM, James Bowery <jabow...@gmail.com>wrote:
>>
>>   The theory is a photon like zitterbewegung model describing states
>>> that retain locality in phase space with circular cycles of a trapped
>>> photon representing the usual eigenstates.  The Maxwell quanta hbar(c)
>>> becomes a classical angular momentum quanta in phase space with quantum
>>> number 137 attached.
>>>
>>
>>  Ah, gotcha.  Thank you.  Hence also the electron "becoming a photon" as
>> it approaches the lowest level.
>>
>>  Now we have to decide whether we can live with a series { 1/2, 1/3,
>> 1/4, ..., 1/136, alpha(N) }.  (Or something like that.)
>>
>>  Eric
>>
>>
>

Reply via email to