Que tal começar provando que x --> sen(x^2) não é periódica?

2018-04-14 13:04 GMT-03:00 Claudio Buffara <claudio.buff...@gmail.com>:

> Eu também fiquei inseguro em relação a isso e também notei que não usei
> (pelo menos não explicitamente) a continuidade de f.
>
> Mas g(raiz(x+kT)) = g(raiz(x+(k+1)T) não só para um número x fixo, mas
> para cada x >= -kT: um intervalo infinito.
> Será que isso não é suficiente para estabelecer a periodicidade de g?
>
> []s,
> Claudio.
>
>
> 2018-04-14 11:42 GMT-03:00 Bernardo Freitas Paulo da Costa <
> bernardo...@gmail.com>:
>
>> Oi Claudio,
>>
>> 2018-04-14 10:54 GMT-03:00 Claudio Buffara <claudio.buff...@gmail.com>:
>> > f é periódica (digamos, de período T > 0).
>> >
>> > Suponhamos que g também seja periódica, digamos de período P.
>> >
>> > Para todo x, e todo k em N tal que x+kT >= 0, g(raiz(x+kT)) = f(x+kT) =
>> > f(x+(k+1)T) = g(raiz(x+(k+1)T)) ==>
>> > raiz(x+(k+1)T) - raiz(x+kT) = nP, para algum n em N.
>>
>> não é verdade que, se g(x) é periódica, e g(x) = g(y), então x - y é
>> múltiplo do período.  Por exemplo, sin(pi/2 + a) = sin(pi/2 - a), para
>> todo a.
>>
>> > Mas tomando k suficientemente grande, podemos fazer raiz(x+(k+1)T) -
>> > raiz(x+kT) tão pequeno quanto quisermos, em particular < P, o que
>> contraria
>> > raiz(x+(k+1)T) - raiz(x+kT) = nP.
>>
>> Intuitivamente, deve mesmo ter a ver com o que você falou sobre o
>> limite da diferença das raízes em PA, mas acho que é um pouco mais
>> complicado.  Repare que, no enunciado do Arthur, tem um "f
>> contínua"...
>>
>> > 2018-04-12 15:55 GMT-03:00 Artur Steiner <artur.costa.stei...@gmail.com
>> >:
>> >>
>> >> Suponhamos que f:R —> R seja contínua, periódica e não constante.
>> Mostre
>> >> que g(x) = f(x^2) não é periódica.
>> >>
>> >> Artur
>>
>> Abraços,
>> --
>> Bernardo Freitas Paulo da Costa
>>
>> --
>> Esta mensagem foi verificada pelo sistema de antivírus e
>>  acredita-se estar livre de perigo.
>>
>>
>> =========================================================================
>> Instru�ões para entrar na lista, sair da lista e usar a lista em
>> http://www.mat.puc-rio.br/~obmlistas/obm-l.html
>> =========================================================================
>>
>
>

-- 
Esta mensagem foi verificada pelo sistema de antiv�rus e
 acredita-se estar livre de perigo.

Responder a