Boa noite! Creio ter conseguido. Seja k o número de algarismos do período de 1/3^2005. Como (3,10)=1 então k é a ordem 10 mod 3^2005. 3^(n-2)|| 3^(n-2); (|| significa divide exatamente) e 3^2||10-1 então pelo lema de Hensel 3^n||10^(3^(n-2))-1 para n>=2.(i) Então 10^(3^(n-2))= 1 mod 3^n logo ord 10 mod 3^n | 3^(n-2) Se x<>3^(n-2) absurdo; pois, teria que ser 3^k com k<n-2 e por (i) 3^(k+2)||10^(3^k)-1 e k+2<n . ord 10 mod 3^2005 =3^2003 3^2003 algarismos Saudações, PJMS
Em sáb, 29 de fev de 2020 16:13, Pedro José <petroc...@gmail.com> escreveu: > Boa tarde! > 3^2005 e não 10^2005. > > Em sex, 28 de fev de 2020 16:06, Pedro José <petroc...@gmail.com> > escreveu: > >> Boa tarde! >> Questão complicada. >> Como (3^2005; 10) =1, o número de dígitos x deve ser a ordem de 10 mod >> 10^2005. Portanto x | 2*3^2004. >> Se 10 fosse uma raiz primitiva de 3^2005 aí daria x=2.3^2004. Mas parece >> que não... >> Achar essa ordem é muito difícil, pelo menos para mim. >> O que achei empiricamente foi a conjectura: ord 10 mod 3^n = 3^(n-2) para >> n>=2. >> Será que sai por indução, aí seriam 3^2003 algarismos. Caso a conjectura >> esteja correta. >> >> Saudações, >> PJMS >> >> Em qui., 20 de fev. de 2020 às 18:12, Prof. Douglas Oliveira < >> profdouglaso.del...@gmail.com> escreveu: >> >>> Qual o número de dígitos do período de 1/(3^2005) ? >>> >>> >>> Saudações >>> Douglas Oliveira >>> >>> -- >>> Esta mensagem foi verificada pelo sistema de antivírus e >>> acredita-se estar livre de perigo. >> >> -- Esta mensagem foi verificada pelo sistema de antiv�rus e acredita-se estar livre de perigo.