Boa noite!
Errata da nota anterior independente de m e não de m, supondo (m,n)=1 e m/n
não inteiro.
Outro ponto não há necessidade a verificação de se o proposto vale para
quando n for múltiplo de 2 ou de 10, pois a ordem m mod n só existe se
(10,n)=1. Foi bobagem só ter aventado a possibilidade.
n
Boa tarde!
Douglas,
Não creio, no meu entendimento 3^2003 é o número de algarismos da dízima
pois, é a ordem 10 módulo 3^2005.
1/3^2005 tem uma montoeira de algarismos zeros no início do período o que
não acontece em 3^2005.
O número de algarismos do período de uma dízima m/n, pelo menos quando n
n
3^2003 é o período certo??, o número de dígitos disso que seria a pergunta.
👊👊👊
Douglas oliveira
Em dom, 8 de mar de 2020 11:13, Prof. Douglas Oliveira <
profdouglaso.del...@gmail.com> escreveu:
> Olá Pedro, primeiramente muito obrigado pela sua solução, eu dei uma
> olhada rápida e acredito est
Olá Pedro, primeiramente muito obrigado pela sua solução, eu dei uma olhada
rápida e acredito estar correta. Estarei olhando com mais calma, assim que
tiver um tempinho.
Douglas Oliveira.
Em dom, 8 de mar de 2020 11:05, Pedro José escreveu:
> Bom dia!
> Não compreendi o porquê dessa questão ter
Bom dia!
Não compreendi o porquê dessa questão ter sido vilipendiada. Não sou
matemático, sou pitaqueiro, ouço falar em inteiros de Gauss vou atrás, de
espaço fibrado idem, equações de Pell idem..., o que não consigo aprender
fica para o futuro. Quando me aposentar cursar uma faculdade de
matemáti
Boa tarde!
Não me senti muito seguro na resposta. Está correto?
Saudações,
PJMS
Em seg., 2 de mar. de 2020 às 23:27, Pedro José
escreveu:
> Boa noite!
> Creio ter conseguido.
> Seja k o número de algarismos do período de 1/3^2005. Como (3,10)=1 então
> k é a ordem 10 mod 3^2005.
> 3^(n-2)|| 3^(
Boa noite!
Creio ter conseguido.
Seja k o número de algarismos do período de 1/3^2005. Como (3,10)=1 então k
é a ordem 10 mod 3^2005.
3^(n-2)|| 3^(n-2); (|| significa divide exatamente) e 3^2||10-1 então pelo
lema de Hensel 3^n||10^(3^(n-2))-1 para n>=2.(i)
Então 10^(3^(n-2))= 1 mod 3^n logo ord 10
Boa tarde!
3^2005 e não 10^2005.
Em sex, 28 de fev de 2020 16:06, Pedro José escreveu:
> Boa tarde!
> Questão complicada.
> Como (3^2005; 10) =1, o número de dígitos x deve ser a ordem de 10 mod
> 10^2005. Portanto x | 2*3^2004.
> Se 10 fosse uma raiz primitiva de 3^2005 aí daria x=2.3^2004. Mas
Boa tarde!
Questão complicada.
Como (3^2005; 10) =1, o número de dígitos x deve ser a ordem de 10 mod
10^2005. Portanto x | 2*3^2004.
Se 10 fosse uma raiz primitiva de 3^2005 aí daria x=2.3^2004. Mas parece
que não...
Achar essa ordem é muito difícil, pelo menos para mim.
O que achei empiricamente
Estou conjecturando que 1/3^n tem período igual a 3^(n-2) , para n>=3.
Carlos Victor
Em 20/02/2020 18:01, Prof. Douglas Oliveira escreveu:
> Qual o número de dígitos do período de 1/(3^2005) ?
>
> Saudações
> Douglas Oliveira
> --
> Esta mensagem foi verificada pelo sistema de antivru
10 matches
Mail list logo