Olá, segue uma solução.
Resposta. Apenas f(x) = 1 para todo x, f(x) = -1 para todo x ou f(x) =
x^2-1 para todo x.
Solução. defina g(x) = f(x) + 1. A equação dada vira
g(x^2y - y) = (g(x) - 1)^2g(y). (*)
Fazendo x=1 nessa nova equação, temos g(0) = (g(1) - 1)^2g(y) para todo y.
Caso g(1) não f
Faz y = 0, isole f(x), faz x= 1, isole f(y)
Original Message
On 11/11/24 19:12, Pedro Júnior wrote:
> Pessoal, alguém pode me ajudar com esse problema?
>
> Seja R o conjunto dos reais. Determine todas as funções f: R--> R tais que,
> para quaisquer x e y reais, temos
> f(x^2 y
Pessoal, alguém pode me ajudar com esse problema?
Seja R o conjunto dos reais. Determine todas as funções f: R--> R tais que,
para quaisquer x e y reais, temos
f(x^2 y - y) = f(x)^2 f(y) + f(x)^2 - 1.
Desde já fico grato!
Att,
Pedro
--
Esta mensagem foi verificada pelo sistema de antiv�rus e
Eu cheguei em 616. Assim:
Vamos primeiro contar os diferentes quadradões, sem considerar as
colorações repetidas por rotação
C8,2 (escolhe 2 cores) * C2,1 (escolhe 1 cor pra diagonal principal) = 56
C8,3 (escolhe 3 cores) * C3,1 (escolhe 1 delas pra repetir) * C2,1 (escolhe
a diagonal que terá co
Em qua., 7 de ago. de 2024 às 10:24, Armando Staib
escreveu:
>
> Em 1 diagonal eu fiz elas iguais ou diferentes.
> Qdo sao iguais 8*7*7*1/4
> Qdo sao diferentes 8*7*6*6/4
> Total 602
>
>
> Em qua, 7 de ago de 2024 08:50, Prof. Douglas Oliveira
> escreveu:
>>
>> A diferença do meu para o seu foi
Em 1 diagonal eu fiz elas iguais ou diferentes.
Qdo sao iguais 8*7*7*1/4
Qdo sao diferentes 8*7*6*6/4
Total 602
Em qua, 7 de ago de 2024 08:50, Prof. Douglas Oliveira <
profdouglaso.del...@gmail.com> escreveu:
> A diferença do meu para o seu foi no segundo caso, em que considerei
> apenas 2 rota
A diferença do meu para o seu foi no segundo caso, em que considerei apenas
2 rotações.
Em qua., 7 de ago. de 2024, 08:01, Marcelo Gonda Stangler <
marcelo.gonda.stang...@gmail.com> escreveu:
> Dúvida o problema em diagonais!
>
> Os casos em que a diagonal tem a mesma cor, e tem cores diferen
Dúvida o problema em diagonais!
Os casos em que a diagonal tem a mesma cor, e tem cores diferentes, são
casos disjuntos que totalizam os casos totais, e caso ambas diagonais sejam
iguais (dentro de seu par), só podemos ter 2 rotações, e se não sempre
poderemos ter 4 rotações. Segue o desenvolvimen
Olá amigos, estou bem curioso com o seguinte probleminha que encontrei na
lista do POTI do Carlos Shine de combinatória, onde não sei se esqueci
algum caso e encontrei 616 (acho), a resposta do Shine é 1044 e coloquei no
chat gpt (rs) e ele falou a respeito de um tal de Burnside e encontrou 903.
kk
Em seg., 22 de jul. de 2024 às 20:39, Gilberto Azevedo
escreveu:
>
> Qual o problema mais difícil de geometria da história da IMO ?
Eu acho que a IMO da Índia rendeu o problema mais difícil de geometria.
> Sei que isso é muito relativo, mas em números, qual o problema de geometria
> que teve me
Eu já tentei inúmeras vezes sair da lista, o sistema não funciona. Por
favor, alguém me ajuda, eu não aguento mais receber emails
--
Esta mensagem foi verificada pelo sistema de antiv�rus e
acredita-se estar livre de perigo.
Qual o problema mais difícil de geometria da história da IMO ?
Sei que isso é muito relativo, mas em números, qual o problema de geometria
que teve menos pessoas com 7 pontos ?
Alguém tem essa informação? Dissecar no site é uma missão rsrsrs
--
Esta mensagem foi verificada pelo sistema de antiv�r
Ops: a *intersecção entre P e {a-1, a+1}* só conterá a+1 no final.
Em seg., 15 de jul. de 2024 às 20:42, Joel Soares Moreira
escreveu:
> Sabendo o seu próprio número, a, um matemático sabe que o número do outro
> matemático pode ser ou a-1 ou a+1. Ele sabe com certeza o número do outro
> matemát
Sabendo o seu próprio número, a, um matemático sabe que o número do outro
matemático pode ser ou a-1 ou a+1. Ele sabe com certeza o número do outro
matemático se a intersecção entre {a-1, a+1} e o conjunto de potenciais
valores do outro matemático, "P", só tem um elemento (i.e. ele excluiu ou
a-1 o
Dois gênios matemáticos recebem dois numeros naturais consecutivos (eles só
sabem o próprio número e que são consecutivos, mas nao sabem quem é o
maior.)
Eles se alternam perguntando: vc ja sabe qual o meu número? E respondem
sinceramente.
Mostre que em algum momento algum dos dois diz sim.
Como q
ah, podem ignorar essa pergunta. eu já perguntei isso antes aqui e fui
respondido.
Em seg., 17 de jun. de 2024 às 12:55, Luiz Eduardo Ardovino <
luizeduardoardov...@gmail.com> escreveu:
> Olá a todos, Bom dia/tarde/noite.
>
> Há algum limite de idade para alguém participar da OBMU?
>
--
Esta me
Olá a todos, Bom dia/tarde/noite.
Há algum limite de idade para alguém participar da OBMU?
--
Esta mensagem foi verificada pelo sistema de antiv�rus e
acredita-se estar livre de perigo.
Olá Cláudio, bom dia.
Espero que esteja bem e te desejo uma excelente semana!
Perdoe-me, pela demora em responder.
Estudei o teorema e é muito bonito mesmo, como afirmam os matemáticos.
Obrigado pelas orientações.
Abraços, Marcelo.
Em sex., 7 de jun. de 2024 às 11:52, Claudio Buffara <
claudi
Os 3 pontos médios dos lados são os vértices do triângulo medial.
Com base neles, é simples vc achar os vértices do triângulo.
Daí, supondo que você está trabalhando no plano complexo, forme o polinômio
de grau 3 cujos zeros são estes 3 vértices.
Os focos da elipse de Steiner são os zeros da deriva
Olá Anderson, bom dia.
É o mesmo problema.
Eu especifiquei para facilitar.
Até o momento não encontrei nenhuma construção geométrica que se utilize
dos pontos por onde por onde a elipse passa, sem traçá-la, e que ensine uma
forma de a partir daí achar os seus respectivos focos.
Se houver uma so
Em sex., 7 de jun. de 2024 08:30, Marcelo Gomes
escreveu:
> Olá a todos, bom dia.
>
> Por favor, alguém poderia me informar se seria possível realizar a
> construção geométrica para encontrar *os focos* de uma elipse somente com
> as informações abaixo?
>
> A elipse neste caso é a elipse de Stein
Olá a todos, bom dia.
Por favor, alguém poderia me informar se seria possível realizar a
construção geométrica para encontrar *os focos* de uma elipse somente com
as informações abaixo?
A elipse neste caso é a elipse de Steiner, que apresenta área mínima e está
inscrita em um triângulo ABC.
Dado
Em qua., 13 de mar. de 2024 às 13:07, Claudio Buffara
escreveu:
>
> Mas este caso tem 7 pessoas. E o enunciado fala em 3 A e 3 C.
>
> On Wed, Mar 13, 2024 at 9:28 AM Pedro Júnior
> wrote:
>>
>> Eu pensei sim, mas e os casos do tipo ACCACAC. Esse caso não entra na conta
>> 6! - 2* 3!* 3!.
>>
>>
Mas este caso tem 7 pessoas. E o enunciado fala em 3 A e 3 C.
On Wed, Mar 13, 2024 at 9:28 AM Pedro Júnior
wrote:
> Eu pensei sim, mas e os casos do tipo ACCACAC. Esse caso não entra na
> conta 6! - 2* 3!* 3!.
>
> Em qua., 13 de mar. de 2024 às 09:09, Claudio Buffara <
> claudio.buff...@gmail.co
Eu pensei sim, mas e os casos do tipo ACCACAC. Esse caso não entra na conta
6! - 2* 3!* 3!.
Em qua., 13 de mar. de 2024 às 09:09, Claudio Buffara <
claudio.buff...@gmail.com> escreveu:
> Pense no oposto: de quantas maneiras as crianças e adultos podem se sentar
> separados uns dos outros.
>
> On
Pense no oposto: de quantas maneiras as crianças e adultos podem se sentar
separados uns dos outros.
On Wed, Mar 13, 2024 at 8:39 AM Pedro Júnior
wrote:
> Olá pessoal, bom dia.
> Alguém poderia me ajudar nesse problema?
>
> Seis poltronas enfileiradas em um cinema e entram 3 adultos e 3 crianças
Olá pessoal, bom dia.
Alguém poderia me ajudar nesse problema?
Seis poltronas enfileiradas em um cinema e entram 3 adultos e 3 crianças.
De quantas maneiras podem sentar-se 2 crianças juntas e dois adultos juntos?
Desde já fico grato!
--
Esta mensagem foi verificada pelo sistema de antiv�rus e
Em seg., 4 de mar. de 2024 às 09:53, Pedro José escreveu:
>
> Bom dia!
> Mas provar que ocorrendo as duas está certo, não é o que foi pedido.
Não foi isso que ele fez. Ele demonstrou que ambas as expressões são
equivalentes a r==7s (mod17).
Portanto, ambas são equivalentes entre si.
> Pode ser q
Em sáb., 2 de mar. de 2024 às 15:28, Claudio Buffara
escreveu:
>
> Isso só perguntando pra quem elaborou a questão.
> Mas a ideia pode ter surgido quando, ao manipular expressões desse tipo, a
> pessoa notou que:
> 9r + 5r +4(2r +3s) = 17(r + s)
> e isso a fez pensar no enunciado.
Eu me lembro d
Bom dia!
Mas provar que ocorrendo as duas está certo, não é o que foi pedido.
Pode ser que ocorrendo as duas esteja OK e também que haja pelo menos um
caso, que dá certo para a primeira assertiva e não ocorre para a segunda ou
pode ter pelo menos um caso que ocorra para a segunda e não ocorra para
Isso só perguntando pra quem elaborou a questão.
Mas a ideia pode ter surgido quando, ao manipular expressões desse tipo, a
pessoa notou que:
9r + 5r +4(2r +3s) = 17(r + s)
e isso a fez pensar no enunciado.
On Sat, Mar 2, 2024 at 12:37 PM Marcone Borges
wrote:
> Sendo r e s inteiros, mostre que
Sendo r e s inteiros, mostre que 9r +5s divide 17 se, e somente se, 2r + 3s
divide 17.
De 9r + 5s ==0(mod 17), assim como de 2r + 3s ==0(mod17), segue que
r==7s (mod17). Daí sai a resposta.
Ou podemos mostrar o que foi pedido usando 9r + 5r +4(2r +3s) = 17(r + s)
Mas, do ponto de vista de quem ela
Desculpas, Cláudio. É isso mesmo, com "a" e "b" inteiros e positivos.
Obrigado pela brilhante solução.
Em ter, 27 de fev de 2024 01:41, Claudio Buffara
escreveu:
> Deveria ser a e b inteiros positivos, não?
> Pois se forem inteiros sem restrição, então como 2022/2023 < 2022,5/2023,5
> < 2023/20
Deveria ser a e b inteiros positivos, não?
Pois se forem inteiros sem restrição, então como 2022/2023 < 2022,5/2023,5
< 2023/2024, bastaria tomar a sequência:
a(n) = -20225*n e b(n) = -20235*n.
Daí teríamos 2022/2023 < a(n)/b(n) < 2023/2024 e a sequência a(n)+b(n)
seria ilimitada inferiormente.
Vejam se este caminho é uma possibilidade (sujeita a ajustes e correções.
Fiquem à vontade!)
2022/2023 < a/b < 2023/2024 (I)
2022/2023 < (a+b-b)/b < 2023/2024
2022/2023 < (a+b)/b-b/b < 2023/2024
2022/2023 < (a+b)/b-1 < 2023/2024
2022/2023 +1< (a+b)/b-1 +1 < 2023/2024+1
(2022+2023)/2023 < (a+b)/b <
Quem puder me ajudar, fixo grato.
Sejam a e b dois números inteiros. Sabendo que 2022/2023 < a/b < 2023/2024,
determine o menos calor da soma a + b.
--
Esta mensagem foi verificada pelo sistema de antiv�rus e
acredita-se estar livre de perigo.
Em ter, 16 de jan de 2024 12:23, Claudio Buffara
escreveu:
> "Há vários problemas de CT com duas soluções."
>
> Claro!... Fora o óbvio , com infinitas soluções (todas
> semelhantes entre si...) tem o se, por exemplo, A for agudo e a < b
> < a/sen(A).
>
> O Geogebra certamente é uma tremenda fe
"Há vários problemas de CT com duas soluções."
Claro!... Fora o óbvio , com infinitas soluções (todas semelhantes
entre si...) tem o se, por exemplo, A for agudo e a < b < a/sen(A).
O Geogebra certamente é uma tremenda ferramenta.
Mas quantos professores sabem usá-lo adequadamente?
[]s,
Claud
Na competição Elon Lages Lima de 2021 caiu a seguinte recorrência:
x_{0}=1,x_{n+1}=sen(x_{n}). E a questão pergunta o valor do limite
\lim_{n\to +\infty}\frac{\log(x_{n})}{log(n)}.
Alguém sabe como proceder?
Obrigado.
--
Esta mensagem foi verificada pelo sistema de antiv�rus e
acredita-se estar
Em dom., 14 de jan. de 2024 às 00:58, Luís Lopes
escreveu:
>
> Saudações, oi Anderson,
>
> Soluções usando fórmulas servem para mostrar que o triângulo é construtível e
> qual é sua forma e tamanho.
Mostrar que é construtível, neste caso, implica mostrar a construção.
E ela é recheada de
> Já a
Não tenho dúvidas de que o nível de dificuldade destes problemas varia de
“trivial” até “extremamente difícil”. Talvez até existam problemas em
aberto - ninguém acha uma solução e nem consegue provar que não existe
solução.
O problem dos dados e’ interessante: existem triplas de dados que resultam
Trace AM com comprimento m_a.
Trace a circunferência com diâmetro AM.
Trace AP com comprimento h_a e P na circunferência.
* M será o ponto médio de BC e P o pé da altura relativa a A.
Prolonga AM até MA', com AM = MA'.
* AA' será a diagonal do paralelogramo ABA'C, cujas diagonais se bissectam
Saudações, oi Anderson,
Soluções usando fórmulas servem para mostrar que o triângulo é construtível e
qual é sua forma e tamanho. Já ajuda naquela parte - suponha o problema
resolvido. Mas a construção procurada deverá ser feita usando as propriedades
da figura.
Posso mandar no privado para qu
Em qui, 11 de jan de 2024 17:32, Anderson Torres <
torres.anderson...@gmail.com> escreveu:
>
>
> Em qui, 11 de jan de 2024 12:40, Luís Lopes
> escreveu:
>
>> Vou mandar um texto bem carequinha.
>>
>> h_a,m_a,h_c:b
>>
>
> Esse não fiz ainda.
>
Quanto a esse aqui, o máximo que consegui foi:
h_c/b
Vou tentar reply por aqui. Fiz reply no hotmail e não chegou.
Obrigado pela solução (AT). Finalmente consegui as
construções dos dois problemas com as figuras.
Posso mandá-las no privado para quem se interessar.
Luís
--
Esta mensagem foi verificada pelo sistema de antiv�rus e
acredita-se est
Em qui, 11 de jan de 2024 17:59, Marcelo Gonda Stangler <
marcelo.gonda.stang...@gmail.com> escreveu:
> Qual o objetivo disso?
>
Dadas certas informações, construir um triângulo com régua e compasso
> Em qui., 11 de jan. de 2024 5:41 PM, Anderson Torres <
> torres.anderson...@gmail.com> escreve
Qual o objetivo disso?
Em qui., 11 de jan. de 2024 5:41 PM, Anderson Torres <
torres.anderson...@gmail.com> escreveu:
>
>
> Em qui, 11 de jan de 2024 12:40, Luís Lopes
> escreveu:
>
>> Vou mandar um texto bem carequinha.
>>
>> h_a,m_a,h_c:b
>>
>
> Esse não fiz ainda.
>
> b+c,h_a,h_b:h_c
>>
>
> B
Em qui, 11 de jan de 2024 12:40, Luís Lopes
escreveu:
> Vou mandar um texto bem carequinha.
>
> h_a,m_a,h_c:b
>
Esse não fiz ainda.
b+c,h_a,h_b:h_c
>
Bem, ah_a=bh_b=ch_c = 2S onde S é a área de ABC.
Assim, c/b = hb/hc.
Conhecendo b+c e c/b, obtemos c e b (é uma construção fácil via
paralelism
Mando outra mensagem pois reply não funciona. Pensei que estava claro. Notação
padrão de triângulo. Construir os triângulos com R&C com os dados fornecidos.
h_a altura; m_a mediana;
b+c soma dos lados AC e AB (vértices do triângulo);
h_c:b razão h_c/b
--
Esta mensagem foi verificada pelo sist
Em qui, 11 de jan de 2024 12:40, Luís Lopes
escreveu:
> Vou mandar um texto bem carequinha.
>
> h_a,m_a,h_c:b
> b+c,h_a,h_b:h_c
>
Eu não entendi nada.
> LuÃs
>
>
> --
> Esta mensagem foi verificada pelo sistema de antivírus e
> acredita-se estar livre de perigo.
>
>
> ==
Vou mandar um texto bem carequinha.
h_a,m_a,h_c:b
b+c,h_a,h_b:h_c
Luís
--
Esta mensagem foi verificada pelo sistema de antiv�rus e
acredita-se estar livre de perigo.
=
Instru��es para entrar na lista, sair da lista e us
Mensagens não chegam.
--
Esta mensagem foi verificada pelo sistema de antiv�rus e
acredita-se estar livre de perigo.
=
Instru��es para entrar na lista, sair da lista e usar a lista em
http://www.mat.puc-rio.br/~obmlistas/ob
Sauda,c~oes,
ha=h_a, ma=m_a, hc=h_c etc.
Construir o triângulo ABC dados e
.
Os problemas foram retirados do livro de Julius Petersen. Problemas 252 e 258,
p.48.
Não mando o link do livro pois já mandei duas mensagens de emails
diferentes com o link
e nenhuma das dua
Sauda,c~oes,
ha=h_a, ma=m_a, hc=h_c etc.
TC (construção geométrica de triângulo),
conhecimento-quase-morto. Notação consagrada.
Os problemas foram retirados do livro de Julius Petersen (ver link). Problemas
252 e 258, p.48.
https://books.google.ca/books?id=H89FAQAAIAAJ&printsec=frontcover
Em dom., 31 de dez. de 2023 às 00:56, Pedro José escreveu:
>
> Boa noite!
> Cláudio, minha preocupação é com a solução em si da equação.
> O problema original pede que demonstre que k é um quadrado perfeito. Todas
> soluções que vi são baseadas nas relações de Girad ou Vieta's fórmula como
> cha
Boa noite!
Cláudio, minha preocupação é com a solução em si da equação.
O problema original pede que demonstre que k é um quadrado perfeito. Todas
soluções que vi são baseadas nas relações de Girad ou Vieta's fórmula como
chamam lá fora.
Eu parti do conhecimento de que k tem de ser quadrado perfeit
Dá um Google em "IMO 88".
Vai ter até vídeo com a solução deste problema.
On Thu, Dec 28, 2023 at 4:35 PM Pedro José wrote:
> Boa tarde!
> Com referência a esse problema criei uma conjectura, não consegui provar
> com a pretensão de abranger todas as soluções da equação:
>
> (a^2+b^2)/(ab+1)= k,
Peço máxima vênia. Nem.reparata que fizera uma referência errada. OBM ao
invés de IMO. Interpretei erroneamente como uma censura. Só depois é que
reparei que falhará na referência.
Minhas escusas.
Cordialmente, PJMS.
Em qui., 28 de dez. de 2023 19:47, Anderson Torres <
torres.anderson...@gmail.co
Em qui, 28 de dez de 2023 19:01, Pedro José escreveu:
> E daí?
>
E daí e daí?
> Em qui., 28 de dez. de 2023 18:42, Anderson Torres <
> torres.anderson...@gmail.com> escreveu:
>
>> Isso não é da OBM mas da IMO
>>
>> Em qui, 28 de dez de 2023 16:35, Pedro José
>> escreveu:
>>
>>> Boa tarde!
>>>
E daí?
Em qui., 28 de dez. de 2023 18:42, Anderson Torres <
torres.anderson...@gmail.com> escreveu:
> Isso não é da OBM mas da IMO
>
> Em qui, 28 de dez de 2023 16:35, Pedro José
> escreveu:
>
>> Boa tarde!
>> Com referência a esse problema criei uma conjectura, não consegui provar
>> com a pret
Isso não é da OBM mas da IMO
Em qui, 28 de dez de 2023 16:35, Pedro José escreveu:
> Boa tarde!
> Com referência a esse problema criei uma conjectura, não consegui provar
> com a pretensão de abranger todas as soluções da equação:
>
> (a^2+b^2)/(ab+1)= k, com a,b,k Naturais e a>1, b>1 e k>1 Fiz
Em qui, 28 de dez de 2023 17:40, Bruno Bianchi Pagani <
brunobianchipag...@gmail.com> escreveu:
> Como que eu saio disso?
>
procure pelas instruções de unsubscribe.
> On Thu, Dec 28, 2023, 4:35 PM Pedro José wrote:
>
>> Boa tarde!
>> Com referência a esse problema criei uma conjectura, não con
Como que eu saio disso?
On Thu, Dec 28, 2023, 4:35 PM Pedro José wrote:
> Boa tarde!
> Com referência a esse problema criei uma conjectura, não consegui provar
> com a pretensão de abranger todas as soluções da equação:
>
> (a^2+b^2)/(ab+1)= k, com a,b,k Naturais e a>1, b>1 e k>1 Fiz essa
> rest
Boa tarde!
Com referência a esse problema criei uma conjectura, não consegui provar
com a pretensão de abranger todas as soluções da equação:
(a^2+b^2)/(ab+1)= k, com a,b,k Naturais e a>1, b>1 e k>1 Fiz essa restrição
para retirar as soluções triviais.
E SPG considerei a>b, já que a=b só ocorre pa
Olá, pessoas!
O site https://imoibero.blogspot.com/ mantém alguns arquivos de
treinamentos antigos da IMO e IBERO. Mas os links estão quebrados.
Alguém tem as cópias ou sabe como posso contatar o webmaster para reavê-las?
--
Esta mensagem foi verificada pelo sistema de antiv�rus e
acredita-se
Por que você não começa com um caso menor, tal como 4, 6 ou 9 moedas no
total?
Como você não consegue distinguir, numa dada pesagem, um grupo só com
moedas verdadeiras e um grupo com 2 moedas falsas, um algoritmo
pra resolver este problema com o menor número possível de pesagens não me
parece óbvi
Eu tinha errado umas contas, mas sua cota está correta Ralph, preciso
montar um exemplo com 21 pesagens
Em dom., 19 de nov. de 2023 às 15:00, Jeferson Almir <
jefersonram...@gmail.com> escreveu:
> Pelo visto, está sim Ralph!! Agora temos que montar uma estratégia que com
> 21 pesagens.
>
> Em dom
Pelo visto, está sim Ralph!! Agora temos que montar uma estratégia que com
21 pesagens.
Em dom., 19 de nov. de 2023 às 13:55, Ralph Costa Teixeira <
ralp...@gmail.com> escreveu:
> Existem 2022*2021/2 possibilidades para as 2 falsas. Qualquer estratégia
> que seja criada com k pesagens que dão ape
Existem 2022*2021/2 possibilidades para as 2 falsas. Qualquer estratégia
que seja criada com k pesagens que dão apenas 2 respostas cada distingue no
máximo dentre 2^k possibilidades. Então devemos ter 2^k >= 2022*2021/2...
hmm, isso daria k como pelo menos 21? Errei algo?
On Sun, Nov 19, 2023, 12:
Amigos, encontrei como K mínimo o valor 11 mas desconfio que seja menos. Se
alguém souber uma ideia que acabe o problema serei grato.
Em Villa Par todas as moedas autênticas pesam uma quantidade par de gramas
e todas as moedas falsas pesam uma quantidade impar de gramas.
Se você tiver 2022 moeda
Boa tarde,
Aos professores deste grupo, pergunto:
Qual a opnião de vocês na implementação de análises TRI para olimpíadas,
provas, vestibulares?
A psicometria não é utilizada em muitos sistemas de avaliações no Brasil
(apenas o ENEM a aplica em escala nacional), mas é um modelo que pode
ajudar bas
Boa noite,
Compreendo que os reais formam um corpo incontável, e por isso são uma
extensão algébrica infinita (transcendental) sobre os racionais; assim,
formam um espaço vetorial de dimensão infinita sobre esses. Minha questão
é: é necessário o axioma da escolha para que se possa escolher um núme
Oi, Alexandre. Quando a gente escreve uma "pilha" de potências sem
parênteses, a convenção é que ela deve ser calculada "de cima para baixo."
Por exemplo:
2^3^4 = 2^(3^4)=2^81 (convenção usual)
ao invés de
(2^3)^4=2^12 (essa precisa de parênteses ali no 2^3).
No caso, acho que o pessoal falava de
Ok Claudio, obrigado.
Abraços
Em qua., 1 de nov. de 2023 às 19:18, Claudio Buffara <
claudio.buff...@gmail.com> escreveu:
> Se entendi direito, você pegou L = 15 e fez x = 15^(1/15) = 1,19786. Foi
> isso?
> Mas este x está no intervalo [e^(-e), e^(1/e)].
> Daí, pra este x, a sequência converge (
Boa noite,
Tem uma coisa que não estou entendendo ... Enxergo , a expressão infinita
de x elevada a x elevada a x (aplicando a propriedade de potência de
potência) ... Como segue
x^(x^(n-1)) = 2
E
x^(x^(n-1)) = 4
Com n tendendo a infinito.
log x . log x = log (log 2))/(n-1)
E
log x . log x = l
Se entendi direito, você pegou L = 15 e fez x = 15^(1/15) = 1,19786. Foi
isso?
Mas este x está no intervalo [e^(-e), e^(1/e)].
Daí, pra este x, a sequência converge (pra 1,254088...).
Pra x > 1, quando você aumenta a "quantidade de x" o valor da torre de
expoentes aumenta.
Ou seja, x > 1 ==> x <
Oi Claudio, mas sabe, o que mais me incomoda é o fato de que em lnx =
lnL/L, se tomarmos a função g(L) = lnL/L , teremos 0< g(L) <= 1/e. Para
um único valor de "x" temos dois valores para L e, daí reforçando ( não sei
se estou bobeando em algo) a ideia de que na hipótese de existir lim
a(n+1) =
Dando um Google em x^x^x, eu achei sites que NADA tinham a ver com este
problema...
Mas procurando um pouco mais, achei a afirmação (sem demonstração) de que a
sequência converge para e^(-e) <= x <= e^(1/e).
Explorando numericamente, me convenci de que isso está (provavelmente)
correto.
Ou seja, da
Ok Marcelo, ciente.
Abraços
Em qua., 1 de nov. de 2023 às 15:46, Marcelo Gonda Stangler <
marcelo.gonda.stang...@gmail.com> escreveu:
> Note, que o engano está, no caso de encontrar o valor quando L=4, em pular
> de 'se há convergência, x=raiz(2)' para 'x=raiz(2) equivale à convergência'
>
> Ab
Note, que o engano está, no caso de encontrar o valor quando L=4, em pular
de 'se há convergência, x=raiz(2)' para 'x=raiz(2) equivale à convergência'
Abs
Em qua, 1 de nov de 2023 08:47, Pacini Bores
escreveu:
> Olá pessoal, gostaria da opinão de vocês com relação a essas duas
> equações, em qu
Oi Claudio, obrigado pelo esclarecimento. O que eu vejo sempre é alguns
dando simplesmente a resposta que para L=4 o problema se torna impossível,
e na verdade necessita de uma análise de como você bem colocou.
Abraços
Pacini
Em qua., 1 de nov. de 2023 às 13:34, Claudio Buffara <
claudio.buff..
A ideia me parece ser definir a sequência (a(n)) por:
a(0) = x e a(n+1) = x^a(n)
e daí ver para que valores de x ela converge e, se convergir, para qual
limite.
Se a(n) convergir para L, então x^L = L.
Com L = 2 e L = 4, x^L = L implica que x = raiz(2).
Explorando numericamente com uma plan
Olá pessoal, gostaria da opinão de vocês com relação a essas duas equações,
em que ambas , é claro garantindo a convergência, temos a mesma resposta
para "x". O que muitos falam que a segunda igualdade não é possível. O que
me intriga é que é possível mostrar( se não estiver errado), é que o "x" é
Obrigado, Marcelo, abs!
Em qua., 25 de out. de 2023 00:24, Marcelo Gonda Stangler <
marcelo.gonda.stang...@gmail.com> escreveu:
> Este problema, com um pouco de uso de substituição pode ser mostrado como
> análogo a isolar em x: k=x-e^(-1/x+1)
> Tu precisas limitar o "quanto" estás disposto a fat
Este problema, com um pouco de uso de substituição pode ser mostrado como
análogo a isolar em x: k=x-e^(-1/x+1)
Tu precisas limitar o "quanto" estás disposto a fatorar, pois poderiamos
isolar x deixando-o em função de f(x) tal que f(x)-e^(-1/f(x)+1)=k. Mas
suspeito que não é isto que queres.
Se est
Caros, olá. Tenho a seguinte equação: 1/ln(x) - 1/(x-1) = k, com x e k
reais. Quero isolar o x, mas não consigo. Pergunto: alguém tem alguma dica?
E pergunto tb: é possível que simplesmente não haja meios de isolar o x?
Nesse caso, como se prova isso? abs.
--
Esta mensagem foi verificada pelo sis
Em qua, 4 de out de 2023 15:49, carlos h Souza
escreveu:
> Boa tarde,
>
> Para fins didáticos é mais fácil encontrar os números primos em forma de
> fatoração numérica ou usar o Crivo de Eratóstenes ?
>
Fatoração, de longe.
Os primos são definidos precisamente como "os infatoráveis".
Já o cri
Fatoração, com certeza. Por exemplo, diga pra garotada analisar os números
de 2 a 100 e determinar quais podem ser expressos como produto de números
naturais menores. Como dica, pra facilitar o trabalho, diga pra eles
consultarem a tabuada (e também pra observarem que, na tabuada, nem todos
os nú
Boa tarde,
Para fins didáticos é mais fácil encontrar os números primos em forma de
fatoração numérica ou usar o Crivo de Eratóstenes ?
Obrigados a todos.
--
Esta mensagem foi verificada pelo sistema de antiv�rus e
acredita-se estar livre de perigo.
Minhas mensagens não chegam quando faço reply. Tenho sempre que começar uma
nova. Segue a que mandei ontem, agora incluindo o Gugu (parece que é assim que
ele gosta de ser chamado).
%%
Saudações,
Obrigado aos que responderam. É por aí, Ralph. Seu argumento é quase uma cópia
do que veio no
Por outro lado existem funções (necessariamente descontínuas) de R em R que
satisfazem essa equação funcional. Vou tentar
descrever uma delas.
Seja a=LambertW(1)~0,5671432904... a solução real de e^(-x)=x, como o Ralph
mencionou. Vou escrever g(x)=e^(-x).
Queremos f(f(x))=g(x). Vamos definir recurs
P.S.: Existe um argumento simples para mostrar que NÃO existe *f:R->R*
*contínua* com f(f(x))=g(x) que serve para qualquer g estritamente
decrescente (como esta g(x)=e^(-x)). Funciona assim:
i) f teria que ser bijetiva. Afinal, f(a)=f(b) implica f(f(a))=f(f(b)) e,
daqui (g bijetiva) vem a=b.
ii) M
Tecnicamente esta f existe: você pode tomar f:{a}->{a} dada por f(a)=a onde
a=LambertW(1)~0,56714... (a raiz de e^(-x)=x). ;D ;D ;D
Ou melhor dizendo: o problema fala algo sobre o domínio dessa f? Ou dela
ser contínua, pelo menos?
On Sat, Sep 23, 2023 at 8:25 PM Luís Lopes wrote:
> Saudaçõ
Se f(x) puder ser constante, a aproximação de ~10^(-8) de diferença
é 0.567143290
Em sáb., 23 de set. de 2023 20:25, Luís Lopes
escreveu:
> Saudações,
>
> Existe tal f? Se sim, qual seria?
>
> Recebi um e-mail com esta pergunta, sem maiores detalhes. Pelo e-mail, tal
> f não existe. Problema
Saudações,
Existe tal f? Se sim, qual seria?
Recebi um e-mail com esta pergunta, sem maiores detalhes. Pelo e-mail, tal f
não existe. Problema encontrado pelo remetente no YouTube.
Luís
--
Esta mensagem foi verificada pelo sistema de antiv�rus e
acredita-se estar livre de perigo.
Boa tarde!
Vou considerar 3 números mesmo.
3, 3, 3 é um número só repetido três vezes.
Os três números obrigatoriamente estarão em P.A. Então usando a menor razão
r <>0;
temos r=1
{1,2,3} {2,3,4}...{2020, 2021, 2022}
{2021, 2022, 2023} temos 2021 conjuntos para r=1.
É fácil observar que para r=2 o
Data: 25/08/2023
De: Priscila Santana
Para: obm-l@mat.puc-rio.br
Assunto: [obm-l] Comunicação
Olá!
Existe algum grupo de discussão de questões olímpicas no WhatsApp?
Atte.
Priscila S. da Paz
Sauda,c~oes,
O Renato Madeira administra um. Ele pede somente que quem pedir
para se inscrever que
Sauda,c~oes,
O Renato Madeira administra um. Ele pede somente que quem pedir
para se inscrever que se identifique cono membro desta lista.
Renato Madeira
WhatsApp: 55 21 99889 1516
Luís Lopes
Data: 25/08/2023
De: Priscila Santana <priscila@hotmail.com>
Para: obm-l@mat.puc-
https://t.me/+jz8XW7bgRqNlOTg5
Criei esse grupo no telegram. A principal vantagem do Telegram em relação
ao Whatsapp é que quem entra pode ter acesso a todas as mensagens e
arquivos anteriores. A quantidade de membros que podem entrar é de 200.000.
Tô pensando aqui em umas regras também, tais como
Ola pessoal!
Nesta lista, da qual participamos, qualquer um (mesmo que não esteja
inscrito na lista) pode acessar os arquivos, fazer pesquisas e ler
todos os problemas e suas solucoes.
No whatsapp, isto seria impossivel, a menos que o individuo ja
estivesse participando desde o inicio.
[]'s
Roge
1 - 100 de 1004 matches
Mail list logo